
Pascal

ISO 7185:1990

This online copy of the unextended Pascal standard is provided only as an aid to standardization.

In the case of di�erences between this online version and the printed version, the printed version

takes precedence.

Do not modify this document. Do not include this document in another software product. You may

print this document for personal use only. Do not sell this document.

Use this information only for good; never for evil. Do not expose to �re. Do not operate heavy

equipment after reading, may cause drowsiness. Do not read under the inuence of alcohol (although

there have been several uncon�rmed reports that alcohol actually improves the readability). The

standard is written in English. If you have trouble understanding a particular section, read it again

and again and again... Sit up straight. Eat your vegatables. Do not mumble.

cISO/IEC 1991

ISO/IEC 7185:1990(E)

ii

ISO/IEC 7185:1990(E)

Acknowledgements

The e�orts are acknowledged of all those who contributed to the work of the BSI and ISO Pascal

working groups, and in particular:

Tony Addyman Harris Hall John Reagan

Albrecht Biedl Carsten Hammer Mike Rees

Bob Brewer Atholl Hay Arthur Sale

Coen Bron Tony Hetherington Paula Schwartz

David Burnett-Hall Steve Hobbs Barry Smith

David Bustard Mel Jackson John Souter

Barry Byrne Scott Jameson Manfred Stadel

Klaus Daessler David Jones Bob Tennent

Richard De Morgan David Joslin Tom Turba

Norman Diamond Katsuhiko Kakehi Eiiti Wada

Bob Dietrich Olivier Lecarme Willem Wakker

Ken Edwards Jim Miner David Watt

Jacques Farr�e Wes Munsil Jim Welsh

Bill Findlay Bill Price Brian Wichmann

The e�orts are acknowledged of all those who contributed to the work of JPC, and in particular:

Michael Alexander Steven Hobbs David L. Presberg

Je�rey Allen Albert A. Ho�man William C. Price

Ed Barkmeyer Robert Hutchins Bruce Ravenal

W. Ashby Boaz Rosa C. Hwang David L. Reese

Jack Boudreaux Scott Jameson David C. Robbins

A. Winsor Brown David Jones Lynne Rosenthal

Jerry R. Brookshire Steen Jurs Tom Rudkin

Tomas M. Burger Mel Kanner Stephen C. Schwarm

David S. Cargo John Kaufmann Rick Shaw

Richard J. Cichelli Leslie Klein Carol Sledge

Joe Cointment Bruce Knobe Barry Smith

Roger Cox Dennis Kodimer Rudeen S. Smith

Jean Danver Ronald E. Kole Bill Stackhouse

Debra Deutsch Alan A. Kortesoja Marius Troost

Bob Dietrich Edward Krall Thomas N. Turba

Victor A. Folwarczny Robert Lange Prescott K. Turner

G. G. Gustafson Rainer McCown Howard Turtle

Thomas Giventer Jim Miner Robert Tuttle

Hellmut Golde Eugene N. Miya Richard C. Vile, Jr

David N. Gray Mark Molloy Larry B. Weber

Paul Gregory William Neuhauser David Weil

Michael Hagerty Dennis Nicholson Thomas R. Wilcox

Charles E. Haynes Mark Overgaard Thomas Wolfe

Christopher Henrich Ted C. Park Harvey Wohlwend

iii

ISO/IEC 7185:1990(E)

Steven Hiebert Donald D. Peckham Kenneth M. Zemrowski

Ruth Higgins David Peercy

Charles Hill Robert C. B. Poon

(The above list is of people acknowledged in ANSI/IEEE770X3.97-1983.)

iv

ISO/IEC 7185:1990(E)

Introduction

This International Standard provides an unambiguous and machine independent de�nition of the

programming language Pascal. Its purpose is to facilitate portability of Pascal programs for use on

a wide variety of data processing systems.

Language history

The computer programming language Pascal was designed by Professor Niklaus Wirth to satisfy two

principal aims

a) to make available a language suitable for teaching programming as a systematic discipline

based on certain fundamental concepts clearly and naturally reected by the language;

b) to de�ne a language whose implementations could be both reliable and e�cient on then-

available computers.

However, it has become apparent that Pascal has attributes that go far beyond these original goals.

It is now being increasingly used commercially in the writing of both system and application software.

This International Standard is primarily a consequence of the growing commercial interest in Pascal

and the need to promote the portability of Pascal programs between data processing systems.

In drafting this International Standard the continued stability of Pascal has been a prime objective.

However, apart from changes to clarify the speci�cation, two major changes have been introduced.

a) The syntax used to specify procedural and functional parameters has been changed to require

the use of a procedure or function heading, as appropriate (see 6.6.3.1); this change was

introduced to overcome a language insecurity.

b) A �fth kind of parameter, the conformant-array-parameter, has been introduced (see 6.6.3.7).

With this kind of parameter, the required bounds of the index-type of an actual-parameter

are not �xed, but are restricted to a speci�ed range of values.

Project history

In 1977, a working group was formed within the British Standards Institution (BSI) to produce a

standard for the programming language Pascal. This group produced several working drafts, the

�rst draft for public comment being widely published early in 1979. In 1978, BSI's proposal that

Pascal be added to ISO's program of work was accepted, and the ISO Pascal Working Group (then

designated ISO/TC97/SC5/WG4) was formed in 1979. The Pascal standard was to be published

by BSI on behalf of ISO, and this British Standard referenced by the International Standard.

In the USA, in the fall of 1978, application was made to the IEEE Standards Board by the IEEE

Computer Society to authorize project 770 (Pascal). After approval, the �rst meeting was held in

January 1979.

In December of 1978, X3J9 convened as a result of a SPARC (Standards Planning and Requirements

Committee) resolution to form a US TAG (Technical Advisory Group) for the ISO Pascal

standardization e�ort initiated by the UK. These e�orts were performed under X3 project 317.

v

ISO/IEC 7185:1990(E)

In agreement with IEEE representatives, in February of 1979, an X3 resolution combined the X3J9

and P770 committees into a single committee called the Joint X3J9/IEEE-P770 Pascal Standards

Committee. (Throughout, the term JPC refers to this committee.) The �rst meeting as JPC was

held in April 1979.

The resolution to form JPC clari�ed the dual function of the single joint committee to produce a

dpANS and a proposed IEEE Pascal standard, identical in content.

ANSI/IEEE770X3.97-1983, American National Standard Pascal Computer Programming Language,

was approved by the IEEE Standards Board on September 17, 1981, and by the American

National Standards Institute on December 16, 1982. British Standard BS6192, Speci�cation for

Computer programming language Pascal, was published in 1982, and International Standard 7185

(incorporating BS6192 by reference) was approved by ISO on December 1, 1983. Di�erences between

the ANSI and ISO standards are detailed in the Foreword of ANSI/IEEE770X3.97-1983.

In 1985, the ISO Pascal Working Group (then designated ISO/TC97/SC22/WG2, now ISO/IEC

JTC1/SC22/WG2) was reconvened after a long break. An Interpretations Subgroup was formed,

to interpret doubtful or ambiguous portions of the Pascal standards. As a result of the work

of this subgroup, and also of the work on the Extended Pascal standard being produced by

WG2 and JPC, BS6192/ISO7185 was revised and corrected during 1988/89; it is expected that

ANSI/IEEE770X3.97-1983 will be replaced by the revised ISO 7185.

The major revisions to BS6192:1982 to produce the new ISO 7185 are:

a) resolution of the di�erences with ANSI/IEEE770X3.97-1983;

b) relaxation of the syntax of real numbers, to allow \digit sequences" rather than \unsigned

integers" for the various components;

c) in the handling of \end-of-line characters" in text �les;

d) in the handling of run-time errors.

vi

INTERNATIONAL STANDARD ISO/IEC 7185:1990(E)

Information technology | Programming

languages | Pascal

1 Scope

1.1

This International Standard speci�es the semantics and syntax of the computer programming

language Pascal by specifying requirements for a processor and for a conforming program. Two

levels of compliance are de�ned for both processors and programs.

1.2

This International Standard does not specify

a) the size or complexity of a program and its data that will exceed the capacity of any speci�c

data processing system or the capacity of a particular processor, nor the actions to be taken

when the corresponding limits are exceeded;

b) the minimal requirements of a data processing system that is capable of supporting an implementation

of a processor for Pascal;

c) the method of activating the program-block or the set of commands used to control the

environment in which a Pascal program is transformed and executed;

d) the mechanism by which programs written in Pascal are transformed for use by a data

processing system;

e) the method for reporting errors or warnings;

f) the typographical representation of a program published for human reading.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions

of this International Standard. At the time of publication, the edition indicated was valid. All

standards are subject to revision, and parties to agreements based on this International Standard

are encouraged to investigate the possibility of applying the most recent edition of the standard listed

below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 646:1983, Information processing|ISO 7-bit coded character set for information interchange.

1

ISO/IEC 7185:1990(E)

3 De�nitions

For the purposes of this International Standard, the following de�nitions apply.

NOTE | To draw attention to language concepts, some terms are printed in italics on their �rst mention

or at their de�ning occurrence(s) in this International Standard.

3.1 Error

A violation by a program of the requirements of this International Standard that a processor is

permitted to leave undetected.

NOTES

1 If it is possible to construct a program in which the violation or non-violation of this International Standard

requires knowledge of the data read by the program or the implementation de�nition of implementation-

de�ned features, then violation of that requirement is classi�ed as an error. Processors may report on such

violations of the requirement without such knowledge, but there always remain some cases that require

execution, simulated execution, or proof procedures with the required knowledge. Requirements that can

be veri�ed without such knowledge are not classi�ed as errors.

2 Processors should attempt the detection of as many errors as possible, and to as complete a degree as

possible. Permission to omit detection is provided for implementations in which the detection would be an

excessive burden.

3.2 Extension

A modi�cation to clause 6 of the requirements of this International Standard that does not invalidate

any program complying with this International Standard, as de�ned by 5.2, except by prohibiting

the use of one or more particular spellings of identi�ers (see 6.1.2 and 6.1.3).

3.3 Implementation-de�ned

Possibly di�ering between processors, but de�ned for any particular processor.

3.4 Implementation-dependent

Possibly di�ering between processors and not necessarily de�ned for any particular processor.

3.5 Processor

A system or mechanism that accepts a program as input, prepares it for execution, and executes the

process so de�ned with data to produce results.

NOTE | A processor may consist of an interpreter, a compiler and run-time system, or another mechanism,

together with an associated host computing machine and operating system, or another mechanism for

achieving the same e�ect. A compiler in itself, for example, does not constitute a processor.

2

ISO/IEC 7185:1990(E)

Table 1 | Metalanguage symbols
Metasymbol Meaning

= Shall be de�ned to be

> Shall have as an alternative de�nition

| Alternatively

. End of de�nition

[x] 0 or 1 instance of x

{ x } 0 or more instances of x

(x | y) Grouping: either of x or y

`xyz' The terminal symbol xyz

meta-identi�er A nonterminal symbol

4 De�nitional conventions

The metalanguage used in this International Standard to specify the syntax of the constructs is

based on Backus-Naur Form. The notation has been modi�ed from the original to permit greater

convenience of description and to allow for iterative productions to replace recursive ones. Table 1

lists the meanings of the various metasymbols. Further speci�cation of the constructs is given by

prose and, in some cases, by equivalent program fragments. Any identi�er that is de�ned in clause

6 as a required identi�er shall denote the corresponding required entity by its occurrence in such

a program fragment. In all other respects, any such program fragment is bound by any pertinent

requirement of this International Standard.

A meta-identi�er shall be a sequence of letters and hyphens beginning with a letter.

A sequence of terminal and nonterminal symbols in a production implies the concatenation of the

text that they ultimately represent. Within 6.1 this concatenation is direct; no characters shall

intervene. In all other parts of this International Standard the concatenation is in accordance with

the rules set out in 6.1.

The characters required to form Pascal programs shall be those implicitly required to form the tokens

and separators de�ned in 6.1.

Use of the words of, in, containing, and closest-containing, when expressing a relationship between

terminal or nonterminal symbols, shall have the following meanings

|the x of a y: refers to the x occurring directly in a production de�ning y;

|the x in a y: is synonymous with `the x of a y';

|a y containing an x: refers to any y from which an x is directly or indirectly derived;

|the y closest-containing an x: that y containing an x and not containing another y containing

that x.

These syntactic conventions are used in clause 6 to specify certain syntactic requirements and also

the contexts within which certain semantic speci�cations apply.

In addition to the normal English rules for hyphenation, hyphenation is used in this International

3

ISO/IEC 7185:1990(E)

Standard to form compound words that represent meta-identi�ers, semantic terms, or both. All

meta-identi�ers that contain more than one word are written as a unit with hyphens joining the

parts. Semantic terms ending in \type" and \variable" are also written as one hyphenated unit.

Semantic terms representing compound ideas are likewise written as hyphenated units, e.g., digit-

value, activation-point, assignment-compatible, and identifying-value.

NOTES are included in this International Standard only for purposes of clari�cation, and aid in the

use of the standard. NOTES are informative only and are not a part of the International Standard.

Examples in this International Standard are equivalent to NOTES.

5 Compliance

There are two levels of compliance, level 0 and level 1. Level 0 does not include conformant-array-

parameters. Level 1 does include conformant-array-parameters.

5.1 Processors

A processor complying with the requirements of this International Standard shall

a) if it complies at level 0, accept all the features of the language speci�ed in clause 6, except for

6.6.3.6 e), 6.6.3.7, and 6.6.3.8, with the meanings de�ned in clause 6;

b) if it complies at level 1, accept all the features of the language speci�ed in clause 6 with the

meanings de�ned in clause 6;

c) not require the inclusion of substitute or additional language elements in a program in order

to accomplish a feature of the language that is speci�ed in clause 6;

d) be accompanied by a document that provides a de�nition of all implementation-de�ned features;

e) be able to determine whether or not the program violates any requirements of this International

Standard, where such a violation is not designated an error, report the result of this determination

to the user of the processor before the execution of the program-block, if any, and shall prevent

execution of the program-block, if any;

f) treat each violation that is designated an error in at least one of the following ways

1) there shall be a statement in an accompanying document that the error is not reported,

and a note referencing each such statement shall appear in a separate section of the

accompanying document;

2) the processor shall report the error or the possibility of the error during preparation of

the program for execution and in the event of such a report shall be able to continue

further processing and shall be able to refuse execution of the program-block;

3) the processor shall report the error during execution of the program;

and if an error is reported during execution of the program, the processor shall terminate
execution; if an error occurs within a statement, the execution of that statement shall not be

4

ISO/IEC 7185:1990(E)

completed;

NOTE | 1 This means that processing will continue up to or beyond execution of the program at

the option of the user.

g) be accompanied by a document that separately describes any features accepted by the processor

that are prohibited or not speci�ed in clause 6: such extensions shall be described as being

`extensions to Pascal as speci�ed by ISO/IEC 7185';

h) be able to process, in a manner similar to that speci�ed for errors, any use of any such extension;

i) be able to process, in a manner similar to that speci�ed for errors, any use of an implementation-

dependent feature.

NOTE | 2 The phrase `be able to' is used in 5.1 to permit the implementation of a switch with which the

user may control the reporting.

A processor that purports to comply, wholly or partially, with the requirements of this International

Standard shall do so only in the following terms. A compliance statement shall be produced

by the processor as a consequence of using the processor or shall be included in accompanying

documentation. If the processor complies in all respects with the requirements of this International

Standard, the compliance statement shall be

hThis processori complies with the requirements of level hnumberi of ISO/IEC 7185.

If the processor complies with some but not all of the requirements of this International Standard

then it shall not use the above statement, but shall instead use the following compliance statement

hThis processori complies with the requirements of level hnumberi of ISO/IEC 7185, with the

following exceptions: hfollowed by a reference to, or a complete list of, the requirements of the

International Standard with which the processor does not complyi.

In both cases the text hThis processori shall be replaced by an unambiguous name identifying the

processor, and the text hnumberi shall be replaced by the appropriate level number.

NOTE | 3 Processors that do not comply fully with the requirements of the International Standard are

not required to give full details of their failures to comply in the compliance statement; a brief reference

to accompanying documentation that contains a complete list in su�cient detail to identify the defects is

su�cient.

5.2 Programs

A program conforming with the requirements of this International Standard shall

a) if it conforms at level 0, use only those features of the language speci�ed in clause 6, except

for 6.6.3.6 e), 6.6.3.7, and 6.6.3.8;

b) if it conforms at level 1, use only those features of the language speci�ed in clause 6; and

c) not rely on any particular interpretation of implementation-dependent features.

NOTES

5

ISO/IEC 7185:1990(E)

1 A program that complies with the requirements of this International Standard may rely on particular

implementation-de�ned values or features.

2 The requirements for conforming programs and compliant processors do not require that the results

produced by a conforming program are always the same when processed by a compliant processor. They

may be the same, or they may di�er, depending on the program. A simple program to illustrate this is

program x(output); begin writeln(maxint) end.

6 Requirements

6.1 Lexical tokens

NOTE | The syntax given in this subclause describes the formation of lexical tokens from characters and

the separation of these tokens and therefore does not adhere to the same rules as the syntax in the rest of

this International Standard.

6.1.1 General

The lexical tokens used to construct Pascal programs are classi�ed into special-symbols, identi�ers,

directives, unsigned-numbers, labels, and character-strings. The representation of any letter (upper

case or lower case, di�erences of font, etc.) occurring anywhere outside of a character-string (see

6.1.7) shall be insigni�cant in that occurrence to the meaning of the program.

letter = `a' j `b' j `c' j `d' j `e' j `f' j `g' j `h' j `i' j `j'
j `k' j `l' j `m' j `n' j `o' j `p' j `q' j `r' j `s' j `t'
j `u' j `v' j `w' j `x' j `y' j `z' .

digit = `0' j `1' j `2' j `3' j `4' j `5' j `6' j `7' j `8' j `9' .

6.1.2 Special-symbols

The special-symbols are tokens having special meanings and are used to delimit the syntactic units

of the language.

special-symbol = `+' j `�' j `*' j `/' j `=' j `<' j `>' j `[' j `]'
j `.' j `,' j `:' j `;' j `"' j `(' j `)'
j `<>' j `<=' j `>=' j `:=' j `..' j word-symbol .

word-symbol = `and' j `array' j `begin' j `case' j `const' j `div'
j `do' j `downto' j `else' j `end' j `�le' j `for'
j `function' j `goto' j `if' j `in' j `label' j `mod'

j `nil' j `not' j `of' j `or' j `packed' j `procedure'
j `program' j `record' j `repeat' j `set' j `then'
j `to' j `type' j `until' j `var' j `while' j `with' .

6

ISO/IEC 7185:1990(E)

6.1.3 Identi�ers

Identi�ers can be of any length. The spelling of an identi�er shall be composed from all its constituent

characters taken in textual order, without regard for the case of letters. No identi�er shall have the

same spelling as any word-symbol. Identi�ers that are speci�ed to be required shall have special

signi�cance (see 6.2.2.10 and 6.10).

identi�er = letter f letter j digit g .

Examples:

X

time

readinteger

WG4

AlterHeatSetting

InquireWorkstationTransformation

InquireWorkstationIdentification

6.1.4 Directives

A directive shall only occur in a procedure-declaration or a function-declaration. The only directive

shall be the required directive forward (see 6.6.1 and 6.6.2). No directive shall have the same

spelling as any word-symbol.

directive = letter f letter j digit g .

NOTE | Many processors provide, as an extension, the directive external, which is used to specify that the

procedure-block or function-block corresponding to that procedure-heading or function-heading is external

to the program-block. Usually it is in a library in a form to be input to, or that has been produced by, the

processor.

6.1.5 Numbers

An unsigned-integer shall denote in decimal notation a value of integer-type (see 6.4.2.2). An

unsigned-real shall denote in decimal notation a value of real-type (see 6.4.2.2). The letter `e'

preceding a scale-factor shall mean times ten to the power of. The value denoted by an unsigned-

integer shall be in the closed interval 0 to maxint (see 6.4.2.2 and 6.7.2.2).

signed-number = signed-integer j signed-real .

signed-real = [sign] unsigned-real .

signed-integer = [sign] unsigned-integer .

unsigned-number = unsigned-integer j unsigned-real .

sign = `+' j `�' .

7

ISO/IEC 7185:1990(E)

unsigned-real = digit-sequence `.' fractional-part [`e' scale-factor]

j digit-sequence `e' scale-factor .

unsigned-integer = digit-sequence .

fractional-part = digit-sequence .

scale-factor = [sign] digit-sequence .

digit-sequence = digit f digit g .

8

ISO/IEC 7185:1990(E)

Examples:

1e10

1

+100

-0.1

5e-3

87.35E+8

6.1.6 Labels

Labels shall be digit-sequences and shall be distinguished by their apparent integral values and shall

be in the closed interval 0 to 9999. The spelling of a label shall be its apparent integral value.

label = digit-sequence .

6.1.7 Character-strings

A character-string containing a single string-element shall denote a value of the required char-type

(see 6.4.2.2). A character-string containing more than one string-element shall denote a value of

a string-type (see 6.4.3.2) with the same number of components as the character-string contains

string-elements. All character-strings with a given number of components shall possess the same

string-type.

There shall be an implementation-de�ned one-to-one correspondence between the set of alternatives

from which string-elements are drawn and a subset of the values of the required char-type. The

occurrence of a string-element in a character-string shall denote the occurrence of the corresponding

value of char-type.

character-string = `'' string-element f string-element g `'' .

string-element = apostrophe-image j string-character .

apostrophe-image = `"' .

string-character = one-of-a-set-of-implementation-de�ned-characters .

NOTE | Conventionally, the apostrophe-image is regarded as a substitute for the apostrophe character,

which cannot be a string-character.

Examples:

'A'

';'

''''

'Pascal'

'THIS IS A STRING'

9

ISO/IEC 7185:1990(E)

6.1.8 Token separators

Where a commentary shall be any sequence of characters and separations of lines, containing neither

g nor *), the construct

(`f' j `(*') commentary (`*)' j `g')

shall be a comment if neither the f nor the (* occurs within a character-string or within a commentary.

NOTES

1 A comment may thus commence with { and end with *), or commence with (* and end with }.

2 The sequence (*) cannot occur in a commentary even though the sequence {) can.

Comments, spaces (except in character-strings), and the separations of consecutive lines shall be

considered to be token separators. Zero or more token separators can occur between any two

consecutive tokens, before the �rst token of a program text, or after the last token of the program

text. There shall be at least one separator between any pair of consecutive tokens made up of

identi�ers, word-symbols, labels or unsigned-numbers. No separators shall occur within tokens.

6.1.9 Lexical alternatives

The representation for lexical tokens and separators given in 6.1.1 to 6.1.8, except for the character

sequences (* and *), shall constitute a reference representation for these tokens and separators.

To facilitate the use of Pascal on processors that do not support the reference representation, the

following alternatives have been de�ned. All processors that have the required characters in their

character set shall provide both the reference representations and the alternative representations,

and the corresponding tokens or separators shall not be distinguished. Provision of the reference

representations, and of the alterative token @, shall be implementation-de�ned.

The alternative representations for the tokens shall be

Reference token Alternative token

" @

[(.

] .)

NOTE | 1 The character " that appears in some national variants of ISO 646 is regarded as identical to the

character ^. In this International Standard, the character " has been used because of its greater visibility.

The comment-delimiting characters f and g shall be the reference representations, and (* and *)

respectively shall be alternative representations (see 6.1.8).

NOTE | 2 See also 1.2 f).

10

ISO/IEC 7185:1990(E)

6.2 Blocks, scopes, and activations

6.2.1 Blocks

A block closest-containing a label-declaration-part in which a label occurs shall closest-contain exactly

one statement in which that label occurs. The occurrence of a label in the label-declaration-part of

a block shall be its de�ning-point for the region that is the block. Each applied occurrence of that

label (see 6.2.2.8) shall be a label. Within an activation of the block, all applied occurrences of

that label shall denote the corresponding program-point in the algorithm of the activation at that

statement (see 6.2.3.2 b)).

block = label-declaration-part constant-de�nition-part type-de�nition-part

variable-declaration-part procedure-and-function-declaration-part

statement-part .

label-declaration-part = [`label' label f `,' label g `;'] .

constant-de�nition-part = [`const' constant-de�nition `;' f constant-de�nition `;' g] .

type-de�nition-part = [`type' type-de�nition `;' f type-de�nition `;' g] .

variable-declaration-part = [`var' variable-declaration `;' f variable-declaration `;' g] .

procedure-and-function-declaration-part = f (procedure-declaration

j function-declaration) `;' g .

The statement-part shall specify the algorithmic actions to be executed upon an activation of the

block.

statement-part = compound-statement .

6.2.2 Scopes

6.2.2.1

Each identi�er or label contained by the program-block shall have a de�ning-point.

6.2.2.2

Each de�ning-point shall have a region that is a part of the program text, and a scope that is a part

or all of that region.

6.2.2.3

The region of each de�ning-point is de�ned elsewhere (see 6.2.1, 6.2.2.10, 6.3, 6.4.1, 6.4.2.3,

6.4.3.3, 6.5.1, 6.5.3.3, 6.6.1, 6.6.2, 6.6.3.1, 6.8.3.10, 6.10).

11

ISO/IEC 7185:1990(E)

6.2.2.4

The scope of each de�ning-point shall be its region (including all regions enclosed by that region)

subject to 6.2.2.5 and 6.2.2.6.

6.2.2.5

When an identi�er or label has a de�ning-point for region A and another identi�er or label having

the same spelling has a de�ning-point for some region B enclosed by A, then region B and all regions

enclosed by B shall be excluded from the scope of the de�ning-point for region A.

6.2.2.6

The region that is the �eld-speci�er of a �eld-designator shall be excluded from the enclosing scopes.

6.2.2.7

When an identi�er or label has a de�ning-point for a region, another identi�er or label with the

same spelling shall not have a de�ning-point for that region.

6.2.2.8

Within the scope of a de�ning-point of an identi�er or label, each occurrence of an identi�er or label

having the same spelling as the identi�er or label of the de�ning-point shall be designated an applied

occurrence of the identi�er or label of the de�ning-point, except for an occurrence that constituted

the de�ning-point; such an occurrence shall be designated a de�ning occurrence. No occurrence

outside that scope shall be an applied occurrence.

NOTE | Within the scope of a de�ning-point of an identi�er or label, there are no applied occurrences of

an identi�er or label that cannot be distinguished from it and have a de�ning-point for a region enclosing

that scope.

6.2.2.9

The de�ning-point of an identi�er or label shall precede all applied occurrences of that identi�er

or label contained by the program-block with one exception, namely that an identi�er can have an

applied occurrence in the type-identi�er of the domain-type of any new-pointer-types contained by

the type-de�nition-part containing the de�ning-point of the type-identi�er.

6.2.2.10

Required identi�ers that denote required values, types, procedures, and functions shall be used as if

their de�ning-points have a region enclosing the program (see 6.1.3, 6.3, 6.4.1, and 6.6.4.1).

NOTE | The required identi�ers input and output are not included, since these denote variables.

12

ISO/IEC 7185:1990(E)

6.2.2.11

Whatever an identi�er or label denotes at its de�ning-point shall be denoted at all applied occurrences

of that identi�er or label.

NOTES

1 Within syntax de�nitions, an applied occurrence of an identi�er is quali�ed (e.g., type-identi�er), whereas

a use that constitutes a de�ning-point is not quali�ed.

2 It is intended that such quali�cation indicates the nature of the entity denoted by the applied occurrence:

e.g., a constant-identi�er denotes a constant.

6.2.3 Activations

6.2.3.1

A procedure-identi�er or function-identi�er having a de�ning-point for a region that is a block within

the procedure-and-function-declaration-part of that block shall be designated local to that block.

6.2.3.2

The activation of a block shall contain

a) for the statement-part of the block, an algorithm, the completion of which shall terminate the

activation (see also 6.8.2.4);

b) for each de�ning-point of a label in the label-declaration-part of the block, a corresponding

program-point (see 6.2.1);

c) for each variable-identi�er having a de�ning-point for the region that is the block, a variable

possessing the type associated with the variable-identi�er;

d) for each procedure-identi�er local to the block, a procedure with the procedure-block corresponding

to the procedure-identi�er, and the formal-parameters of that procedure-block;

e) for each function-identi�er local to the block, a function with the function-block corresponding

to, and the result type associated with, the function-identi�er, and the formal-parameters of

that function-block;

f) if the block is a function-block, a result possessing the associated result type.

NOTE | Each activation contains its own algorithm, program-points, variables, procedures, and functions,

distinct from every other activation.

6.2.3.3

The activation of a procedure or function shall be an activation of the block of the procedure-block

of the procedure or function-block of the function, respectively, and shall be designated as within

a) the activation containing the procedure or function; and

13

ISO/IEC 7185:1990(E)

b) all activations that that containing activation is within.

NOTE | An activation of a block B can only be within activations of blocks containing B. Thus, an

activation is not within another activation of the same block.

Within an activation, an applied occurrence of a label or variable-identi�er, or of a procedure-

identi�er or function-identi�er local to the block of the activation, shall denote the corresponding

program-point, variable, procedure, or function, respectively, of that activation; except that the

function-identi�er of an assignment-statement shall, within an activation of the function denoted by

that function-identi�er, denote the result of that activation.

6.2.3.4

A procedure-statement or function-designator contained in the algorithm of an activation and that

speci�es an activation of a block shall be designated the activation-point of the activation of the

block.

6.2.3.5

All variables contained by an activation, except for those listed as program-parameters, and any

result of an activation, shall be totally-unde�ned at the commencement of that activation. The

algorithm, program-points, variables, procedures, and functions, if any, shall exist until the termination

of the activation.

6.3 Constant-de�nitions

A constant-de�nition shall introduce an identi�er to denote a value.

constant-de�nition = identi�er `=' constant .

constant = [sign] (unsigned-number j constant-identi�er)

j character-string .

constant-identi�er = identi�er .

The occurrence of an identi�er in a constant-de�nition of a constant-de�nition-part of a block shall

constitute its de�ning-point for the region that is the block. The constant in a constant-de�nition

shall not contain an applied occurrence of the identi�er in the constant-de�nition. Each applied

occurrence of that identi�er shall be a constant-identi�er and shall denote the value denoted by the

constant of the constant-de�nition. A constant-identi�er in a constant containing an occurrence

of a sign shall have been de�ned to denote a value of real-type or of integer-type. The required

constant-identi�ers shall be as speci�ed in 6.4.2.2 and 6.7.2.2.

14

ISO/IEC 7185:1990(E)

6.4 Type-de�nitions

6.4.1 General

A type-de�nition shall introduce an identi�er to denote a type. Type shall be an attribute that is

possessed by every value and every variable. Each occurrence of a new-type shall denote a type that

is distinct from any other new-type.

type-de�nition = identi�er `=' type-denoter .

type-denoter = type-identi�er j new-type .

new-type = new-ordinal-type j new-structured-type j new-pointer-type .

The occurrence of an identi�er in a type-de�nition of a type-de�nition-part of a block shall constitute

its de�ning-point for the region that is the block. Each applied occurrence of that identi�er shall

be a type-identi�er and shall denote the same type as that which is denoted by the type-denoter of

the type-de�nition. Except for applied occurrences in the domain-type of a new-pointer-type, the

type-denoter shall not contain an applied occurrence of the identi�er in the type-de�nition.

Types shall be classi�ed as simple-types, structured-types or pointer-types. The required type-

identi�ers and corresponding required types shall be as speci�ed in 6.4.2.2 and 6.4.3.5.

simple-type-identi�er = type-identi�er .

structured-type-identi�er = type-identi�er .

pointer-type-identi�er = type-identi�er .

type-identi�er = identi�er .

A type-identi�er shall be considered as a simple-type-identi�er, a structured-type-identi�er, or a

pointer-type-identi�er, according to the type that it denotes.

6.4.2 Simple-types

6.4.2.1 General

A simple-type shall determine an ordered set of values. A value of an ordinal-type shall have an

integer ordinal number; the ordering relationship between any two such values of one type shall be the

same as that between their ordinal numbers. An ordinal-type-identi�er shall denote an ordinal-type.

A real-type-identi�er shall denote the real-type.

simple-type = ordinal-type j real-type-identi�er .

ordinal-type = new-ordinal-type j ordinal-type-identi�er .

new-ordinal-type = enumerated-type j subrange-type .

ordinal-type-identi�er = type-identi�er .

15

ISO/IEC 7185:1990(E)

real-type-identi�er = type-identi�er .

6.4.2.2 Required simple-types

The following types shall exist

a) integer-type. The required type-identi�er integer shall denote the integer-type. The integer-

type shall be an ordinal-type. The values shall be a subset of the whole numbers, denoted

as speci�ed in 6.1.5 by signed-integer (see also 6.7.2.2). The ordinal number of a value of

integer-type shall be the value itself.

b) real-type. The required type-identi�er real shall denote the real-type. The real-type shall

be a simple-type. The values shall be an implementation-de�ned subset of the real numbers,

denoted as speci�ed in 6.1.5 by signed-real.

c) Boolean-type. The required type-identi�er Boolean shall denote the Boolean-type. The

Boolean-type shall be an ordinal-type. The values shall be the enumeration of truth values

denoted by the required constant-identi�ers false and true, such that false is the predecessor

of true. The ordinal numbers of the truth values denoted by false and true shall be the

integer values 0 and 1 respectively.

d) char-type. The required type-identi�er char shall denote the char-type. The char-type

shall be an ordinal-type. The values shall be the enumeration of a set of implementation-

de�ned characters, some possibly without graphic representations. The ordinal numbers of

the character values shall be values of integer-type that are implementation-de�ned and that

are determined by mapping the character values on to consecutive non-negative integer values

starting at zero. The following relations shall hold.

1) The subset of character values representing the digits 0 to 9 shall be numerically ordered

and contiguous.

2) The subset of character values representing the upper case letters A to Z, if available,

shall be alphabetically ordered but not necessarily contiguous.

3) The subset of character values representing the lower case letters a to z, if available, shall

be alphabetically ordered but not necessarily contiguous.

NOTE | Operators applicable to the required simple-types are speci�ed in 6.7.2.

6.4.2.3 Enumerated-types

enumerated-type = `(' identi�er-list `)' .

identi�er-list = identi�er f `,' identi�er g .

The occurrence of an identi�er in the identi�er-list of an enumerated-type shall constitute its

de�ning-point for the region that is the block closest-containing the enumerated-type. Each applied

occurrence of the identi�er shall be a constant-identi�er. Within an activation of the block, all

applied occurrences of that identi�er shall possess the type denoted by the enumerated-type and

16

ISO/IEC 7185:1990(E)

shall denote the type's value whose ordinal number is the number of occurrences of identi�ers

preceding that identi�er in the identi�er-list.

NOTE | Enumerated type constants are ordered by the sequence in which they are de�ned, and they have

consecutive ordinal numbers starting at zero.

Examples:

(red, yellow, green, blue, tartan)

(club, diamond, heart, spade)

(married, divorced, widowed, single)

(scanning, found, notpresent)

(Busy, InterruptEnable, ParityError, OutOfPaper, LineBreak)

6.4.2.4 Subrange-types

A subrange-type shall include identi�cation of the smallest and the largest value in the subrange.

The �rst constant of a subrange-type shall specify the smallest value, and this shall be less than or

equal to the largest value, which shall be speci�ed by the second constant of the subrange-type. Both

constants shall be of the same ordinal-type, and that ordinal-type shall be designated the host-type

of the subrange-type.

subrange-type = constant `..' constant .

Examples:

1..100

-10..+10

red..green

'0'..'9'

6.4.3 Structured-types

6.4.3.1 General

A new-structured-type shall be classi�ed as an array-type, record-type, set-type, or �le-type according

to the unpacked-structured-type closest-contained by the new-structured-type. A component of a

value of a structured-type shall be a value.

structured-type = new-structured-type j structured-type-identi�er .

new-structured-type = [`packed'] unpacked-structured-type .

unpacked-structured-type = array-type j record-type j set-type j �le-type .

The occurrence of the token packed in a new-structured-type shall designate the type denoted

thereby as packed. The designation of a structured-type as packed shall indicate to the processor

that data-storage of values should be economized, even if this causes operations on, or accesses to

components of, variables possessing the type to be less e�cient in terms of space or time.

The designation of a structured-type as packed shall a�ect the representation in data-storage of

17

ISO/IEC 7185:1990(E)

that structured-type only; i.e., if a component is itself structured, the component's representation

in data-storage shall be packed only if the type of the component is designated packed.

NOTE | The ways in which the treatment of entities of a type is a�ected by whether or not the type is

designated packed are speci�ed in 6.4.3.2, 6.4.5, 6.6.3.3, 6.6.3.8, 6.6.5.4, and 6.7.1.

6.4.3.2 Array-types

An array-type shall be structured as a mapping from each value speci�ed by its index-type to

a distinct component. Each component shall have the type denoted by the type-denoter of the

component-type of the array-type.

array-type = `array' `[' index-type f `,' index-type g `]' `of' component-type .

index-type = ordinal-type .

component-type = type-denoter .

Example 1:

array [1..100] of real

array [Boolean] of colour

An array-type that speci�es a sequence of two or more index-types shall be an abbreviated notation

for an array-type speci�ed to have as its index-type the �rst index-type in the sequence and to have a

component-type that is an array-type specifying the sequence of index-types without the �rst index-

type in the sequence and specifying the same component-type as the original speci�cation. The

component-type thus constructed shall be designated packed if and only if the original array-type is

designated packed. The abbreviated form and the full form shall be equivalent.

NOTE | 1 Each of the following two examples thus contains di�erent ways of expressing its array-type.

Example 2:

array [Boolean] of array [1..10] of array [size] of real

array [Boolean] of array [1..10, size] of real

array [Boolean, 1..10, size] of real

array [Boolean, 1..10] of array [size] of real

Example 3:

packed array [1..10, 1..8] of Boolean

packed array [1..10] of packed array [1..8] of Boolean

Let i denote a value of the index-type; let Vi denote a value of that component of the array-type

that corresponds to the value i by the structure of the array-type; let the smallest and largest values

speci�ed by the index-type be denoted by m and n, respectively; and let k = (ord(n)-ord(m)+1)

denote the number of values speci�ed by the index-type; then the values of the array-type shall be

the distinct k-tuples of the form

(Vm,...,Vn).

18

ISO/IEC 7185:1990(E)

NOTE | 2 A value of an array-type does not therefore exist unless all of its component-values are de�ned.

If the component-type has c values, then it follows that the cardinality of the set of values of the array-type

is c raised to the power k.

Any type designated packed and denoted by an array-type having as its index-type a denotation of

a subrange-type specifying a smallest value of 1 and a largest value of greater than 1, and having as

its component-type a denotation of the char-type, shall be designated a string-type.

The correspondence of character-strings to values of string-types is obtained by relating the individual

string-elements of the character-string, taken in textual order, to the components of the values of

the string-type in order of increasing index.

NOTE | 3 The values of a string-type possess additional properties which allow writing them to text�les

(see 6.9.3.6) and de�ne their use with relational-operators (see 6.7.2.5).

6.4.3.3 Record-types

The structure and values of a record-type shall be the structure and values of the �eld-list of the

record-type.

record-type = `record' �eld-list `end' .

�eld-list = [(�xed-part [`;' variant-part] j variant-part) [`;']] .

�xed-part = record-section f `;' record-section g .

record-section = identi�er-list `:' type-denoter .

�eld-identi�er = identi�er .

variant-part = `case' variant-selector `of' variant f `;' variant g .

variant-selector = [tag-�eld `:'] tag-type .

tag-�eld = identi�er .

variant = case-constant-list `:' `(' �eld-list `)' .

tag-type = ordinal-type-identi�er .

case-constant-list = case-constant f `,' case-constant g .

case-constant = constant .

A �eld-list containing neither a �xed-part nor a variant-part shall have no components, shall de�ne

a single null value, and shall be designated empty.

The occurrence of an identi�er in the identi�er-list of a record-section of a �xed-part of a �eld-list

shall constitute its de�ning-point as a �eld-identi�er for the region that is the record-type closest-

containing the �eld-list and shall associate the �eld-identi�er with a distinct component, which shall

be designated a �eld, of the record-type and of the �eld-list. That component shall have the type

19

ISO/IEC 7185:1990(E)

denoted by the type-denoter of the record-section.

The �eld-list closest-containing a variant-part shall have a distinct component that shall have the

values and structure de�ned by the variant-part.

Let Vi denote the value of the i-th component of a non-empty �eld-list having m components; then

the values of the �eld-list shall be distinct m-tuples of the form

(V1, V2,...,Vm).

NOTE | 1 If the type of the i-th component has Fi values, then the cardinality of the set of values of the

�eld-list is (F1 * F2 * ... * Fm).

A tag-type shall be the type denoted by the ordinal-type-identi�er of the tag-type. A case-constant

shall denote the value denoted by the constant of the case-constant.

The type of each case-constant in the case-constant-list of a variant of a variant-part shall be

compatible with the tag-type of the variant-selector of the variant-part. The values denoted by

all case-constants of a type that is required to be compatible with a given tag-type shall be distinct

and the set thereof shall be equal to the set of values speci�ed by the tag-type. The values denoted

by the case-constants of the case-constant-list of a variant shall be designated as corresponding to

the variant.

With each variant-part shall be associated a type designated the selector-type possessed by the

variant-part. If the variant-selector of the variant-part contains a tag-�eld, or if the case-constant-

list of each variant of the variant-part contains only one case-constant, then the selector-type shall

be denoted by the tag-type, and each variant of the variant-part shall be associated with those

values speci�ed by the selector-type denoted by the case-constants of the case-constant-list of the

variant. Otherwise, the selector-type possessed by the variant-part shall be a new ordinal-type that

is constructed to possess exactly one value for each variant of the variant-part, and no others, and

each such variant shall be associated with a distinct value of that type.

Each variant-part shall have a component which shall be designated the selector of the variant-part,

and which shall possess the selector-type of the variant-part. If the variant-selector of the variant-part

contains a tag-�eld, then the occurrence of an identi�er in the tag-�eld shall constitute the de�ning-

point of the identi�er as a �eld-identi�er for the region that is the record-type closest-containing the

variant-part and shall associate the �eld-identi�er with the selector of the variant-part. The selector

shall be designated a �eld of the record-type if and only if it is associated with a �eld-identi�er.

Each variant of a variant-part shall denote a distinct component of the variant-part; the component

shall have the values and structure of the �eld-list of the variant, and shall be associated with those

values speci�ed by the selector-type possessed by the variant-part associated with the variant. The

value of the selector of the variant-part shall cause the associated variant and component of the

variant-part to be in a state that shall be designated active.

The values of a variant-part shall be the distinct pairs

(k, Xk)

where k represents a value of the selector of the variant-part, and Xk is a value of the �eld-list of

20

ISO/IEC 7185:1990(E)

the active variant of the variant-part.

NOTES

2 If there are n values speci�ed by the selector-type, and if the �eld-list of the variant associated with the

i-th value has Ti values, then the cardinality of the set of values of the variant-part is (T1 + T2 + ... +

Tn). There is no component of a value of a variant-part corresponding to any non-active variant of the

variant-part.

3 Restrictions placed on the use of �elds of a record-variable pertaining to variant-parts are speci�ed in

6.5.3.3, 6.6.3.3, and 6.6.5.3.

Examples:

record

year : 0..2000;

month : 1..12;

day : 1..31

end

record

name, firstname : string;

age : 0..99;

case married : Boolean of

true : (Spousesname : string);

false : ()

end

record

x, y : real;

area : real;

case shape of

triangle :

(side : real; inclination, angle1, angle2 : angle);

rectangle :

(side1, side2 : real; skew : angle);

circle :

(diameter : real);

end

6.4.3.4 Set-types

A set-type shall determine the set of values that is structured as the power set of the base-type of

the set-type. Thus, each value of a set-type shall be a set whose members shall be unique values of

the base-type.

set-type = `set' `of' base-type .

base-type = ordinal-type .

21

ISO/IEC 7185:1990(E)

NOTE | 1 Operators applicable to values of set-types are speci�ed in 6.7.2.4.

Examples:

set of char

set of (club, diamond, heart, spade)

NOTE | 2 If the base-type of a set-type has b values, then the cardinality of the set of values is 2 raised

to the power b.

For each ordinal-type T that is not a subrange-type, there shall exist both an unpacked set-

type designated the unpacked-canonical-set-of-T-type and a packed set-type designated the packed-

canonical-set-of-T-type. If S is any subrange-type and T is its host-type, then the set of values

determined by the type set of S shall be included in the sets of values determined by the unpacked-

canonical-set-of-T-type and by the packed-canonical-set-of-T-type (see 6.7.1).

6.4.3.5 File-types

NOTE | 1 A �le-type describes sequences of values of the speci�ed component-type, together with a current

position in each sequence and a mode that indicates whether the sequence is being inspected or generated.

�le-type = `�le' `of' component-type .

A type-denoter shall not be permissible as the component-type of a �le-type if it denotes either a

�le-type or a structured-type having any component whose type-denoter is not permissible as the

component-type of a �le-type.

Examples:

file of real

file of vector

A �le-type shall de�ne implicitly a type designated a sequence-type having exactly those values,

which shall be designated sequences, de�ned by the following �ve rules in items a) to e).

NOTE | 2 The notation x~y represents the concatenation of sequences x and y. The explicit representation

of sequences (e.g., S(c)), of concatenation of sequences; of the �rst, last, and rest selectors; and of sequence

equality is not part of the Pascal language. These notations are used to de�ne �le values, below, and the

required �le operations in 6.6.5.2 and 6.6.6.5.

a) S() shall be a value of the sequence-type S and shall be designated the empty sequence. The

empty sequence shall have no components.

b) Let c be a value of the speci�ed component-type and let x be a value of the sequence-type S;

then S(c) shall be a sequence of type S, consisting of the single component-value c, and both

S(c)~x and x~S(c) shall be sequences, distinct from S(), of type S.

c) Let c, S, and x be as in b), let y denote the sequence S(c)~x and let z denote the sequence

x~S(c); then the notation y.�rst shall denote c (i.e., the �rst component-value of y), y.rest shall

denote x (i.e., the sequence obtained from y by deleting the �rst component), and z.last shall

denote c (i.e., the last component-value of z).

22

ISO/IEC 7185:1990(E)

d) Let x and y each be a non-empty sequence of type S; then x = y shall be true if and only if

both (x.�rst = y.�rst) and (x.rest = y.rest) are true. If x or y is the empty sequence, then x

= y shall be true if and only if both x and y are the empty sequence.

e) Let x, y, and z be sequences of type S; then x ~(y ~z) = (x~y)~z, S()~x = x, and x~S() = x

shall be true.

A �le-type also shall de�ne implicitly a type designated a mode-type having exactly two values, which

are designated Inspection and Generation.

NOTE | 3 The explicit denotation of the values Inspection and Generation is not part of the Pascal language.

A �le-type shall be structured as three components. Two of these components, designated f.L and

f.R, shall be of the implicit sequence-type. The third component, designated f.M, shall be of the

implicit mode-type.

Let f.L and f.R each be a single value of the sequence-type and let f.M be a single value of the

mode-type; then each value of the �le-type shall be a distinct triple of the form

(f.L, f.R, f.M)

where f.R shall be the empty sequence if f.M is the value Generation. The value, f, of the �le-type

shall be designated empty if and only if f.L~f.R is the empty sequence.

NOTE | 4 The two components, f.L and f.R, of a value of the �le-type may be considered to represent the

single sequence f.L ~f.R together with a current position in that sequence. If f.R is non-empty, then f.R.�rst

may be considered the current component as determined by the current position; otherwise, the current

position is the end-of-�le position.

There shall be a �le-type that is denoted by the required structured-type-identi�er text. The

structure of the type denoted by text shall de�ne an additional sequence-type whose values shall be

designated lines. A line shall be a sequence cs ~S(end-of-line), where cs is a sequence of components

possessing the char-type, and end-of-line shall represent a special component-value. Any assertion

in clause 6 that the end-of-line value is attributed to a variable other than a component of a sequence

shall be construed as an assertion that the variable has attributed to it the char-type value space.

If l is a line, then no component of l other than l.last shall be an end-of-line. There shall be an

implementation-de�ned subset of the set of char-type values, designated characters prohibited from

text�les; the e�ect of causing a character in that subset to be attributed to a component of either

t.L or t.R for any text�le t shall be implementation-dependent.

A line-sequence, ls, shall be either the empty sequence or the sequence l ~ ls' where l is a line and

ls' is a line-sequence.

Every value t of the type denoted by text shall satisfy the following two rules:

a) If t.M = Inspection, then t.L ~t.R shall be a line-sequence.

b) If t.M = Generation, then t.L ~t.R shall be ls ~cs, where ls is a line-sequence and cs is a

sequence of components possessing the char-type.

23

ISO/IEC 7185:1990(E)

NOTE | 5 In rule b), cs may be considered, especially if it is non-empty, to be a partial line that is being

generated. Such a partial line cannot occur during inspection of a �le. Also, cs does not correspond to t.R,

since t.R is the empty sequence if t.M = Generation.

A variable that possesses the type denoted by the required type-identi�er text shall be designated

a text�le.

NOTE | 6 All required procedures and functions applicable to a variable of type �le of char are applicable

to text�les. Additional required procedures and functions, applicable only to text�les, are de�ned in 6.6.6.5

and 6.9.

6.4.4 Pointer-types

The values of a pointer-type shall consist of a single nil-value and a set of identifying-values each

identifying a distinct variable possessing the domain-type of the new-pointer-type. The set of

identifying-values shall be dynamic, in that the variables and the values identifying them shall be

permitted to be created and destroyed during the execution of the program. Identifying-values and

the variables identi�ed by them shall be created only by the required procedure new (see 6.6.5.3).

NOTE | 1 Since the nil-value is not an identifying-value, it does not identify a variable.

The token nil shall denote the nil-value in all pointer-types.

pointer-type = new-pointer-type j pointer-type-identi�er .

new-pointer-type = `"' domain-type .

domain-type = type-identi�er .

NOTE | 2 The token nil does not have a single type, but assumes a suitable pointer-type to satisfy the

assignment-compatibility rules, or the compatibility rules for operators, if possible.

6.4.5 Compatible types

Types T1 and T2 shall be designated compatible if any of the following four statements is true:

a) T1 and T2 are the same type.

b) T1 is a subrange of T2, or T2 is a subrange of T1, or both T1 and T2 are subranges of the

same host-type.

c) T1 and T2 are set-types of compatible base-types, and either both T1 and T2 are designated

packed or neither T1 nor T2 is designated packed.

d) T1 and T2 are string-types with the same number of components.

6.4.6 Assignment-compatibility

A value of type T2 shall be designated assignment-compatible with a type T1 if any of the following

�ve statements is true:

24

ISO/IEC 7185:1990(E)

a) T1 and T2 are the same type, and that type is permissible as the component-type of a �le-type

(see 6.4.3.5).

b) T1 is the real-type and T2 is the integer-type.

c) T1 and T2 are compatible ordinal-types, and the value of type T2 is in the closed interval

speci�ed by the type T1.

d) T1 and T2 are compatible set-types, and all the members of the value of type T2 are in the

closed interval speci�ed by the base-type of T1.

e) T1 and T2 are compatible string-types.

At any place where the rule of assignment-compatibility is used

a) it shall be an error if T1 and T2 are compatible ordinal-types and the value of type T2 is not

in the closed interval speci�ed by the type T1;

b) it shall be an error if T1 and T2 are compatible set-types and any member of the value of type

T2 is not in the closed interval speci�ed by the base-type of the type T1.

At any place where the rule of assignment-compatibility is used to require a value of integer-type to

be assignment-compatible with a real-type, an implicit integer-to-real conversion shall be performed.

6.4.7 Example of a type-de�nition-part

type

natural = 0..maxint;

count = integer;

range = integer;

colour = (red, yellow, green, blue);

sex = (male, female);

year = 1900..1999;

shape = (triangle, rectangle, circle);

punchedcard = array [1..80] of char;

charsequence = file of char;

polar = record

r : real;

theta : angle

end;

indextype = 1..limit;

vector = array [indextype] of real;

person = " persondetails;

persondetails = record

name, firstname : charsequence;

age : natural;

married : Boolean;

25

ISO/IEC 7185:1990(E)

father, child, sibling : person;

case s : sex of

male :

(enlisted, bearded : Boolean);

female :

(mother, programmer : Boolean)

end;

FileOfInteger = file of integer;

NOTE | In the above example count, range, and integer denote the same type. The types denoted by

year and natural are compatible with, but not the same as, the type denoted by range, count, and integer.

6.5 Declarations and denotations of variables

6.5.1 Variable-declarations

A variable shall be an entity to which a value can be attributed (see 6.8.2.2). Each identi�er in the

identi�er-list of a variable-declaration shall denote a distinct variable possessing the type denoted

by the type-denoter of the variable-declaration.

variable-declaration = identi�er-list `:' type-denoter .

The occurrence of an identi�er in the identi�er-list of a variable-declaration of the variable-declaration-

part of a block shall constitute its de�ning-point as a variable-identi�er for the region that is

the block. The structure of a variable possessing a structured-type shall be the structure of the

structured-type. A use of a variable-access shall be an access, at the time of the use, to the variable

thereby denoted. A variable-access, according to whether it is an entire-variable, a component-

variable, an identi�ed-variable, or a bu�er-variable, shall denote a declared variable, a component of

a variable, a variable that is identi�ed by a pointer value (see 6.4.4), or a bu�er-variable, respectively.

variable-access = entire-variable j component-variable j identi�ed-variable
j bu�er-variable .

Example of a variable-declaration-part:

var

x, y, z, max : real;

i, j : integer;

k : 0..9;

p, q, r : Boolean;

operator : (plus, minus, times);

a : array [0..63] of real;

c : colour;

f : file of char;

hue1, hue2 : set of colour;

p1, p2 : person;

26

ISO/IEC 7185:1990(E)

m, m1, m2 : array [1..10, 1..10] of real;

coord : polar;

pooltape : array [1..4] of FileOfInteger;

date : record

month : 1..12;

year : integer

end;

NOTE | Variables occurring in examples in the remainder of this International Standard should be assumed

to have been declared as speci�ed in the above example.

6.5.2 Entire-variables

entire-variable = variable-identi�er .

variable-identi�er = identi�er .

6.5.3 Component-variables

6.5.3.1 General

A component of a variable shall be a variable. A component-variable shall denote a component of

a variable. A reference or an access to a component of a variable shall constitute a reference or an

access, respectively, to the variable. The value, if any, of the component of a variable shall be the

same component of the value, if any, of the variable.

component-variable = indexed-variable j �eld-designator .

6.5.3.2 Indexed-variables

A component of a variable possessing an array-type shall be denoted by an indexed-variable.

indexed-variable = array-variable `[' index-expression, f `,' index-expression g `]' .

array-variable = variable-access .

index-expression = expression .

An array-variable shall be a variable-access that denotes a variable possessing an array-type. For an

indexed-variable closest-containing a single index-expression, the value of the index-expression shall

be assignment-compatible with the index-type of the array-type. The component denoted by the

indexed-variable shall be the component that corresponds to the value of the index-expression by

the mapping of the type possessed by the array-variable (see 6.4.3.2).

Example 1:

a[12]

a[i + j]

27

ISO/IEC 7185:1990(E)

m[k]

If the array-variable is itself an indexed-variable, an abbreviation shall be permitted. In the

abbreviated form, a single comma shall replace the sequence] [that occurs in the full form. The

abbreviated form and the full form shall be equivalent.

The order of both the evaluation of the index-expressions of, and the access to the array-variable of,

an indexed-variable shall be implementation-dependent.

Example 2:

m[k][1]

m[k, 1]

NOTE | These two examples denote the same component-variable.

6.5.3.3 Field-designators

A �eld-designator either shall denote that component of the record-variable of the �eld-designator

associated (see 6.4.3.3) with the �eld-identi�er of the �eld-speci�er of the �eld-designator or shall

denote the variable denoted by the �eld-designator-identi�er (see 6.8.3.10) of the �eld-designator.

A record-variable shall be a variable-access that denotes a variable possessing a record-type.

The occurrence of a record-variable in a �eld-designator shall constitute the de�ning-point of the

�eld-identi�ers associated with components of the record-type possessed by the record-variable, for

the region that is the �eld-speci�er of the �eld-designator.

�eld-designator = record-variable `.' �eld-speci�er j �eld-designator-identi�er .

record-variable = variable-access .

�eld-speci�er = �eld-identi�er .

Examples:

p2".mother
coord.theta

An access to a component of a variant of a variant-part, where the selector of the variant-part is not

a �eld, shall attribute to the selector that value associated (see 6.4.3.3) with the variant. It shall

be an error unless a variant is active for the entirety of each reference and access to each component

of the variant.

When a variant becomes non-active, all of its components shall become totally-unde�ned.

NOTE | If the selector of a variant-part is unde�ned, then no variant of the variant-part is active.

6.5.4 Identi�ed-variables

An identi�ed-variable shall denote the variable, if any, identi�ed by the value of the pointer-variable

of the identi�ed-variable (see 6.4.4 and 6.6.5.3) shall be accessible until the termination of the

activation of the program-block or until the variable is made inaccessible (see the required procedure

28

ISO/IEC 7185:1990(E)

dispose, 6.6.5.3).

NOTE | The accessibility of the variable also depends on the existence of a pointer-variable that has

attributed to it the corresponding identifying-value.

A pointer-variable shall be a variable-access that denotes a variable possessing a pointer-type. It shall

be an error if the pointer-variable of an identi�ed-variable either denotes a nil-value or is unde�ned.

It shall be an error to remove from the set of values of the pointer-type the identifying-value of an

identi�ed-variable (see 6.6.5.3) when a reference to the identi�ed-variable exists.

Examples:

p1"
p1".father"
p1".sibling".father"

6.5.5 Bu�er-variables

A �le-variable shall be a variable-access that denotes a variable possessing a �le-type. A bu�er-

variable shall denote a variable associated with the variable denoted by the �le-variable of the

bu�er-variable. A bu�er-variable associated with a text�le shall possess the char-type; otherwise, a

bu�er-variable shall possess the component-type of the �le-type possessed by the �le-variable of the

bu�er-variable.

bu�er-variable = �le-variable `"' .

�le-variable = variable-access .

Examples:

input"
pooltape[2]"

It shall be an error to alter the value of a �le-variable f when a reference to the bu�er-variable

f" exists. A reference or an access to a bu�er-variable shall constitute a reference or an access,

respectively, to the associated �le-variable.

6.6 Procedure and function declarations

6.6.1 Procedure-declarations

procedure-declaration = procedure-heading `;' directive

j procedure-identi�cation `;' procedure-block

j procedure-heading `;' procedure-block .

procedure-heading = `procedure' identi�er [formal-parameter-list] .

procedure-identi�cation = `procedure' procedure-identi�er .

procedure-identi�er = identi�er .

procedure-block = block .

29

ISO/IEC 7185:1990(E)

The occurrence of a formal-parameter-list in a procedure-heading of a procedure-declaration shall

de�ne the formal-parameters of the procedure-block, if any, associated with the identi�er of the

procedure-heading to be those of the formal-parameter-list.

The occurrence of an identi�er in the procedure-heading of a procedure-declaration shall constitute

its de�ning-point as a procedure-identi�er for the region that is the block closest-containing the

procedure-declaration.

Each identi�er having a de�ning-point as a procedure-identi�er in a procedure-heading of a procedure-

declaration in which the directive forward occurs shall have exactly one of its applied occurrences

in a procedure-identi�cation of a procedure-declaration, and this applied occurrence shall be closest-

contained by the procedure-and-function-declaration-part closest-containing the procedure-heading.

The occurrence of a procedure-block in a procedure-declaration shall associate the procedure-block

with the identi�er in the procedure-heading, or with the procedure-identi�er in the procedure-

identi�cation, of the procedure-declaration.

There shall be at most one procedure-block associated with a procedure-identi�er.

Examples of procedure-and-function-declaration-parts:

Example 1:

NOTE --- This example is not for level 0.

procedure AddVectors (var A, B, C : array [low..high : natural] of real);

var

i : natural;

begin

for i := low to high do A[i] := B[i] + C[i]

end f of AddVectors g;

Example 2:

procedure readinteger (var f : text; var x : integer);

var

i : natural;

begin

while f" = ' ' do get(f);

fThe buffer-variable contains the first non-space charg
i := 0;

while f" in ['0'..'9'] do begin

i := (10 * i) + (ord(f") - ord('0'));

get(f)

end;

fThe buffer-variable contains a non-digitg
x := i

fOf course if there are no digits, x is zerog

30

ISO/IEC 7185:1990(E)

end;

procedure bisect (function f(x : real) : real;

a, b : real;

var result : real);

fThis procedure attempts to find a zero of f(x) in (a,b) by

the method of bisection. It is assumed that the procedure is

called with suitable values of a and b such that

(f(a) < 0) and (f(b) >= 0)

The estimate is returned in the last parameter.g
const

eps = 1e-10;

var

midpoint : real;

begin

fThe invariant P is true by calling assumptiong
midpoint := a;

while abs(a - b) > eps * abs(a) do begin

midpoint := (a + b) / 2;

if f(midpoint) < 0 then a := midpoint

else b := midpoint

fWhich re-establishes the invariant:

P = (f(a) < 0) and (f(b) >= 0)

and reduces the interval (a,b) provided that the

value of midpoint is distinct from both a and b.g
end;

fP together with the loop exit condition assures that a zero

is contained in a small subinterval. Return the midpoint as

the zero.g
result := midpoint

end;

procedure PrepareForAppending (var f : FileOfInteger);

f This procedure takes a file in any state suitable for reset and

places it in a condition for appending data to its end. Simpler

conditioning is only possible if assumptions are made about the

initial state of the file. g
var

LocalCopy : FileOfInteger;

procedure CopyFiles (var from, into : FileOfInteger);

begin

reset(from); rewrite(into);

while not eof(from) do begin

into" := from";
put(into); get(from)

31

ISO/IEC 7185:1990(E)

end

end f of CopyFiles g;

begin f of body of PrepareForAppending g
CopyFiles(f, LocalCopy);

CopyFiles(LocalCopy, f)

end f of PrepareForAppending g;

6.6.2 Function-declarations

function-declaration = function-heading `;' directive

j function-identi�cation `;' function-block

j function-heading `;' function-block .

function-heading = `function' identi�er [formal-parameter-list] `:' result-type .

function-identi�cation = `function' function-identi�er .

function-identi�er = identi�er .

result-type = simple-type-identi�er j pointer-type-identi�er .

function-block = block .

The occurrence of a formal-parameter-list in a function-heading of a function-declaration shall de�ne

the formal-parameters of the function-block, if any, associated with the identi�er of the function-

heading to be those of the formal-parameter-list. The function-block shall contain at least one

assignment-statement such that the function-identi�er of the assignment-statement is associated

with the block (see 6.8.2.2).

The occurrence of an identi�er in the function-heading of a function-declaration shall constitute its

de�ning-point as a function-identi�er associated with the result type denoted by the result-type for

the region that is the block closest-containing the function-declaration.

Each identi�er having a de�ning-point as a function-identi�er in the function-heading of a function-

declaration in which the directive forward occurs shall have exactly one of its applied occurrences

in a function-identi�cation of a function-declaration, and this applied occurrence shall be closest-

contained by the procedure-and-function-declaration-part closest-containing the function-heading.

The occurrence of a function-block in a function-declaration shall associate the function-block with

the identi�er in the function-heading, or with the function-identi�er in the function-identi�cation,

of the function-declaration; the block of the function-block shall be associated with the result type

that is associated with the identi�er or function-identi�er.

There shall be at most one function-block associated with a function-identi�er.

Example of a procedure-and-function-declaration-part:

function Sqrt (x : real) : real;

fThis function computes the square root of x (x > 0) using Newton's

method.g

32

ISO/IEC 7185:1990(E)

var

old, estimate : real;

begin

estimate := x;

repeat

old := estimate;

estimate := (old + x / old) * 0.5;

until abs(estimate - old) < eps * estimate;

feps being a global constantg
Sqrt := estimate

end f of Sqrt g;

function max (a : vector) : real;

fThis function finds the largest component of the value of a.g
var

largestsofar : real;

fence : indextype;

begin

largestsofar := a[1];

fEstablishes largestsofar = max(a[1])g
for fence := 2 to limit do begin

if largestsofar < a[fence] then largestsofar := a[fence]

fRe-establishing largestsofar = max(a[1], ... ,a[fence])g
end;

fSo now largestsofar = max(a[1], ... ,a[limit])g
max := largestsofar

end f of max g;

function GCD (m, n : natural) : natural;

begin

if n=0 then GCD := m else GCD := GCD(n, m mod n);

end;

fThe following two functions analyze a parenthesized expression and

convert it to an internal form. They are declared forward

since they are mutually recursive, i.e., they call each other.

These function-declarations use the following identifiers that are not

defined in this International Standard: formula, IsOpenParenthesis, IsOperator,

MakeFormula, nextsym, operation, ReadElement, ReadOperator, and

SkipSymbol. g

function ReadExpression : formula; forward;

function ReadOperand : formula; forward;

33

ISO/IEC 7185:1990(E)

function ReadExpression; fSee forward declaration of heading.g
var

this : formula;

op : operation;

begin

this := ReadOperand;

while IsOperator(nextsym) do

begin

op := ReadOperator;

this := MakeFormula(this, op, ReadOperand);

end;

ReadExpression := this

end;

function ReadOperand; fSee forward declaration of heading.g
begin

if IsOpenParenthesis(nextsym) then

begin

SkipSymbol;

ReadOperand := ReadExpression;

fnextsym should be a close-parenthesisg
SkipSymbol

end

else ReadOperand := ReadElement

end;

6.6.3 Parameters

6.6.3.1 General

The identi�er-list in a value-parameter-speci�cation shall be a list of value parameters. The identi�er-

list in a variable-parameter-speci�cation shall be a list of variable parameters.

formal-parameter-list = `(' formal-parameter-section f `;' formal-parameter-section g `)' .

formal-parameter-section > value-parameter-speci�cation

j variable-parameter-speci�cation

j procedural-parameter-speci�cation

j functional-parameter-speci�cation .

NOTE | 1 There is also a syntax rule for formal-parameter-section in 6.6.3.7.1.

value-parameter-speci�cation = identi�er-list `:' type-identi�er .

variable-parameter-speci�cation = `var' identi�er-list `:' type-identi�er .

34

ISO/IEC 7185:1990(E)

procedural-parameter-speci�cation = procedure-heading .

functional-parameter-speci�cation = function-heading .

An identi�er de�ned to be a parameter-identi�er for the region that is the formal-parameter-list of

a procedure-heading shall be designated a formal-parameter of the block of the procedure-block, if

any, associated with the identi�er of the procedure-heading. An identi�er de�ned to be a parameter-

identi�er for the region that is the formal-parameter-list of a function-heading shall be designated

a formal-parameter of the block of the function-block, if any, associated with the identi�er of the

function-heading.

The occurrence of an identi�er in the identi�er-list of a value-parameter-speci�cation or a variable-

parameter-speci�cation shall constitute its de�ning-point as a parameter-identi�er for the region that

is the formal-parameter-list closest-containing it, and its de�ning-point as the associated variable-

identi�er for the region that is the block, if any, of which it is a formal-parameter.

The occurrence of the identi�er of a procedure-heading in a procedural-parameter-speci�cation shall

constitute its de�ning-point as a parameter-identi�er for the region that is the formal-parameter-list

closest-containing it, and its de�ning-point as the associated procedure-identi�er for the region that

is the block, if any, of which it is a formal-parameter.

The occurrence of the identi�er of a function-heading in a functional-parameter-speci�cation shall

constitute its de�ning-point as a parameter-identi�er for the region that is the formal-parameter-list

closest-containing it, and its de�ning-point as the associated function-identi�er for the region that is

the block, if any, of which it is a formal-parameter.

NOTE | 2 If the formal-parameter-list is contained in a procedural-parameter-speci�cation or a functional-

parameter-speci�cation, there is no corresponding procedure-block or function-block.

6.6.3.2 Value parameters

The formal-parameter and its associated variable-identi�er shall denote the same variable. The

formal-parameter shall possess the type denoted by the type-identi�er of the value-parameter-

speci�cation. The type possessed by the formal-parameter shall be one that is permitted as the

component-type of a �le-type (see 6.4.3.5). The actual-parameter (see 6.7.3 and 6.8.2.3) shall be

an expression whose value is assignment-compatible with the type possessed by the formal-parameter.

The current value of the expression shall be attributed upon activation of the block to the variable

that is denoted by the formal-parameter.

6.6.3.3 Variable parameters

The actual-parameter shall be a variable-access. The type possessed by the actual-parameters shall

be the same as that denoted by the type-identi�er of the variable-parameter-speci�cation, and the

formal-parameters shall also possess that type. The actual-parameter shall be accessed before the

activation of the block, and this access shall establish a reference to the variable thereby accessed

during the entire activation of the block; the corresponding formal-parameter and its associated

variable-identi�er shall denote the referenced variable during the activation.

35

ISO/IEC 7185:1990(E)

An actual variable parameter shall not denote a �eld that is the selector of a variant-part. An actual

variable parameter shall not denote a component of a variable where that variable possesses a type

that is designated packed.

6.6.3.4 Procedural parameters

The actual-parameter (see 6.7.3 and 6.8.2.3) shall be a procedure-identi�er that has a de�ning-

point contained by the program-block. The formal-parameter-list, if any, closest-contained by the

formal-parameter-section and the formal-parameter-list, if any, that de�nes the formal-parameters of

the procedure denoted by the actual-parameter shall be congruous, or neither formal-parameter-list

shall occur. The formal-parameter and its associated procedure-identi�er shall denote the actual-

parameter during the entire activation of the block.

6.6.3.5 Functional parameters

The actual-parameter (see 6.7.3 and 6.8.2.3) shall be a function-identi�er that has a de�ning-point

contained by the program-block. The formal-parameter-list, if any, closest-contained by the formal-

parameter-section and the formal-parameter-list, if any, that de�nes the formal-parameters of the

function denoted by the actual-parameter shall be congruous, or neither formal-parameter-list shall

occur. The result-type closest-contained by the formal-parameter-section shall denote the same type

as the result type of the function. The formal-parameter and its associated function-identi�er shall

denote the actual-parameter during the entire activation of the block.

6.6.3.6 Parameter list congruity

Two formal-parameter-lists shall be congruous if they contain the same number of formal-parameter-

sections and if the formal-parameter-sections in corresponding positions match. Two formal-

parameter-sections shall match if any of the following statements is true.

a) They are both value-parameter-speci�cations containing the same number of parameters and

the type-identi�er in each value-parameter-speci�cation denotes the same type.

b) They are both variable-parameter-speci�cations containing the same number of parameters

and the type-identi�er in each variable-parameter-speci�cation denotes the same type.

c) They are both procedural-parameter-speci�cations and the formal-parameter-lists of the

procedure-headings thereof are congruous.

d) They are both functional-parameter-speci�cations, the formal-parameter-lists of the function-

headings thereof are congruous, and the type-identi�ers of the result-types of the function-

headings thereof denote the same type.

e) They are either both value-conformant-array-speci�cations or both variable-conformant-array-

speci�cations; and in both cases the conformant-array-parameter-speci�cations contain the

same number of parameters and equivalent conformant-array-schemas. Two conformant-array-

schemas shall be equivalent if all of the following four statements are true.

1) There is a single index-type-speci�cation in each conformant-array-schema.

36

ISO/IEC 7185:1990(E)

2) The ordinal-type-identi�er in each index-type-speci�cation denotes the same type.

3) Either the (component) conformant-array-schemas of the conformant-array-schemas are

equivalent or the type-identi�ers of the conformant-array-schemas denote the same type.

4) Either both conformant-array-schemas are packed-conformant-array-schemas or both are

unpacked-conformant-array-schemas.

NOTES

1 The abbreviated conformant-array-schema and its corresponding full form are equivalent (see 6.6.3.7).

2 For the status of item e) above see 5.1 a), 5.1 b), 5.1 c), 5.2 a), and 5.2 b).

6.6.3.7 Conformant array parameters

NOTE | For the status of this subclause see 5.1 a), 5.1 b), 5.1 c), 5.2 a), and 5.2 b).

6.6.3.7.1 General

The occurrence of an identi�er in the identi�er-list contained by a conformant-array-parameter-

speci�cation shall constitute its de�ning-point as a parameter-identi�er for the region that is the

formal-parameter-list closest-containing it and its de�ning-point as the associated variable-identi�er

for the region that is the block, if any, of which it is a formal-parameter. A variable-identi�er so

de�ned shall be designated a conformant-array-parameter.

The occurrence of an identi�er in an index-type-speci�cation shall constitute its de�ning-point as

a bound-identi�er for the region that is the formal-parameter-list closest-containing it and for the

region that is the block, if any, whose formal-parameters are speci�ed by that formal-parameter-list.

formal-parameter-section > conformant-array-parameter-speci�cation .

conformant-array-parameter-speci�cation = value-conformant-array-speci�cation

j variable-conformant-array-speci�cation .

value-conformant-array-speci�cation = identi�er-list `:' conformant-array-schema .

variable-conformant-array-speci�cation = `var' identi�er-list `:' conformant-array-schema .

conformant-array-schema = packed-conformant-array-schema

j unpacked-conformant-array-schema .

packed-conformant-array-schema = `packed' `array' `[' index-type-speci�cation `]'

`of' type-identi�er .

unpacked-conformant-array-schema =

`array' `[' index-type-speci�cation f `;' index-type-speci�cation g `]'

`of' (type-identi�er j conformant-array-schema) .

index-type-speci�cation = identi�er `..' identi�er `:' ordinal-type-identi�er .

factor > bound-identi�er .

37

ISO/IEC 7185:1990(E)

bound-identi�er = identi�er .

NOTE | 1 There are also syntax rules for formal-parameter-section in 6.6.3.1 and for factor in 6.7.1.

If a conformant-array-schema closest-contains a conformant-array-schema, then an abbreviated form

of de�nition shall be permitted. In the abbreviated form, a single semicolon shall replace the sequence

] of array [that occurs in the full form. The abbreviated form and the full form shall be equivalent.

Examples:

array [u..v : T1] of array [j..k : T2] of T3

array [u..v : T1; j..k : T2] of T3

Within the activation of the block, applied occurrences of the �rst identi�er of an index-type-

speci�cation shall denote the smallest value speci�ed by the corresponding index-type (see 6.6.3.8)

possessed by the actual-parameter, and applied occurrences of the second identi�er of the index-

type-speci�cation shall denote the largest value speci�ed by that index-type.

NOTE | 2 The object denoted by a bound-identi�er is neither a constant nor a variable.

The actual-parameters (see 6.7.3 and 6.8.2.3) corresponding to formal-parameters that occur in a

single conformant-array-parameter-speci�cation shall all possess the same type. The type possessed

by the actual-parameters shall be conformable (see 6.6.3.8) with the conformant-array-schema,

and the formal-parameters shall possess an array-type which shall be distinct from any other type

and which shall have a component-type that shall be the �xed-component-type of the conformant-

array-parameters de�ned in the conformant-array-parameter-speci�cation and that shall have the

index-types of the type possessed by the actual-parameters that correspond (see 6.6.3.8) to the

index-type-speci�cations contained by the conformant-array-schema contained by the conformant-

array-parameter-speci�cation. The type denoted by the type-identi�er contained by the conformant-

array-schema contained by a conformant-array-parameter-speci�cation shall be designated the �xed-

component-type of the conformant-array-parameters de�ned by that conformant-array-parameter-

speci�cation.

NOTE | 3 The type possessed by the formal-parameter cannot be a string-type (see 6.4.3.2) because it is

not denoted by an array-type.

6.6.3.7.2 Value conformant arrays

The identi�er-list in a value-conformant-array-speci�cation shall be a list of value conformant arrays.

Each actual-parameter corresponding to a value formal-parameter shall be an expression. The value

of the expression shall be attributed before activation of the block to an auxiliary variable that the

program does not otherwise contain. The type possessed by this variable shall be the same as that

possessed by the expression. This variable shall be accessed before the activation of the block, and

this access shall establish a reference to the variable thereby accessed during the entire activation of

the block; the corresponding formal-parameter and its associated variable-identi�er shall represent

the referenced variable during the activation. The �xed-component-type of a value conformant array

shall be one that is permitted as the component-type of a �le-type.

38

ISO/IEC 7185:1990(E)

If the actual-parameter contains an occurrence of a conformant-array-parameter, then for each

occurrence of the conformant-array-parameter contained by the actual-parameter, either

a) the occurrence of the conformant-array-parameter shall be contained by a function-designator

contained by the actual-parameter; or

b) the occurrence of the conformant-array-parameter shall be contained by an indexed-variable

contained by the actual-parameter, such that the type possessed by that indexed-variable is

the �xed-component-type of the conformant-array-parameter.

NOTE | This ensures that the type possessed by the expression and the auxiliary variable will always be

known and that, as a consequence, the activation record of a procedure can be of a �xed size.

6.6.3.7.3 Variable conformant arrays

The identi�er-list in a variable-conformant-array-speci�cation shall be a list of variable conformant

arrays. The actual-parameter shall be a variable-access. The actual-parameter shall be accessed

before the activation of the block, and this access shall establish a reference to the variable thereby

accessed during the entire activation of the block; the corresponding formal-parameter and its

associated variable-identi�er shall denote the referenced variable during the activation.

An actual-parameter shall not denote a component of a variable where that variable possesses a type

that is designated packed.

6.6.3.8 Conformability

NOTE | 1 For the status of this subclause see 5.1 a), 5.1 b), 5.1 c), 5.2 a), and 5.2 b).

Given a type denoted by an array-type closest-containing a single index-type and a conformant-

array-schema closest-containing a single index-type-speci�cation, then the index-type and the index-

type-speci�cation shall be designated as corresponding. Given two conformant-array-schemas closest-

containing a single index-type-speci�cation, then the two index-type-speci�cations shall be designated

as corresponding. Let T1 be an array-type with a single index-type and let T2 be the type denoted

by the ordinal-type-identi�er of the index-type-speci�cation of a conformant-array-schema closest-

containing a single index-type-speci�cation; then T1 shall be conformable with the conformant-array-

schema if all the following four statements are true.

a) The index-type of T1 is compatible with T2.

b) The smallest and largest values speci�ed by the index-type of T1 lie within the closed interval

speci�ed by T2.

c) The component-type of T1 denotes the same type as that denoted by the type-identi�er of the

conformant-array-schema or is conformable to the conformant-array-schema in the conformant-

array-schema.

d) Either T1 is not designated packed and the conformant-array-schema is an unpacked-conformant-

array-schema, or T1 is designated packed and the conformant-array-schema is a packed-

conformant-array-schema.

39

ISO/IEC 7185:1990(E)

NOTE | 2 The abbreviated and full forms of a conformant-array-schema are equivalent (see 6.6.3.7). The

abbreviated and full forms of an array-type are equivalent (see 6.4.3.2).

At any place where the rule of conformability is used, it shall be an error if the smallest or largest

value speci�ed by the index-type of T1 lies outside the closed interval speci�ed by T2.

6.6.4 Required procedures and functions

The required procedure-identi�ers and function-identi�ers and the corresponding required procedures

and functions shall be as speci�ed in 6.6.5, 6.6.6, and 6.9.

NOTE | Required procedures and functions do not necessarily follow the rules given elsewhere for procedures

and functions.

6.6.5 Required procedures

6.6.5.1 General

The required procedures shall be �le handling procedures, dynamic allocation procedures and

transfer procedures.

6.6.5.2 File handling procedures

Except for the application of rewrite or reset to the program parameters denoted by input or

output, the e�ects of applying each of the �le handling procedures rewrite, put, reset, and get

to a �le-variable f shall be de�ned by pre-assertions and post-assertions about f, its components f.L,

f.R, and f.M, and the associated bu�er-variable f". The use of the variable f0 within an assertion

shall be considered to represent the state or value, as appropriate, of f prior to the operation, while

f (within an assertion) shall denote the variable after the operation, and similarly for f0" and f".

It shall be an error if the stated pre-assertion does not hold immediately prior to any use of the

de�ned operation. It shall be an error if any variable explicitly denoted in an assertion of equality

is unde�ned. The post-assertion shall hold prior to the next subsequent access to the �le, its

components, or its associated bu�er-variable. The post-assertions imply corresponding activities on

the external entities, if any, to which the �le-variables are bound. These activities, and the point at

which they are actually performed, shall be implementation-de�ned.

NOTE | In order to facilitate interactive terminal input and output, the procedure get (and other input

procedures) should be performed at the latest opportunity, and the procedure put (and other output

procedures) should be performed at the �rst opportunity. This technique has been called `lazy I/O'.

rewrite(f)

pre-assertion: true.

post-assertion: (f.L = f.R = S()) and (f.M = Generation) and

(f" is totally-unde�ned).

put(f)

pre-assertion: (f0.M = Generation) and (f0.L is not unde�ned) and (f0.R = S()) and

40

ISO/IEC 7185:1990(E)

(f0" is not unde�ned).

post-assertion: (f.M = Generation) and (f.L = (f0.L ~S(f0"))) and (f.R = S()) and

(f" is totally-unde�ned).

reset(f)

pre-assertion: The components f0.L and f0.R are not unde�ned.

post-assertion: (f.L = S()) and (f.R = (f0.L ~f0.R ~X)) and

(f.M = Inspection) and

(if f.R = S() then (f" is totally-unde�ned) else (f" = f.R.�rst)),

where, if f possesses the type denoted by the required type-identi�er text and if f0.L ~f0.R is

not empty and if (f0.L ~f0.R).last is not an end-of-line, then X shall be a sequence having an

end-of-line component as its only component; otherwise, X = S().

get(f)

pre-assertion: (f0.M = Inspection) and (neither f0.L nor f0.R is unde�ned) and

(f0.R <> S()).

post-assertion: (f.M = Inspection) and (f.L = (f0.L ~ S(f0.R.�rst))) and (f.R = f0.R.rest) and

(if f.R = S()

then (f" is totally-unde�ned)

else (f"= f.R.�rst)).

When the �le-variable f possesses a type other than that denoted by text, the required procedures

read and write shall be de�ned as follows.

read

Let f denote a �le-variable and v1,...,vn denote variable-accesses (n>=2); then the procedure-

statement read(f,v1,...,vn) shall access the �le-variable and establish a reference to that �le-

variable for the remaining execution of the statement. The execution of the statement shall

be equivalent to

begin read(�,v1); read(�,v2,...,vn) end

where � denotes the referenced �le-variable.

Let f be a �le-variable and v be a variable-access; then the procedure-statement read(f,v) shall

access the �le-variable and establish a reference to that �le-variable for the remaining execution

of the statement. The execution of the statement shall be equivalent to

begin v := �"; get(�) end

where � denotes the referenced �le-variable.

NOTE | The variable-access is not a variable parameter. Consequently, it may be a component of a

packed structure, and the value of the bu�er-variable need only be assignment-compatible with it.

write

Let f denote a �le-variable and e1,...,en denote expressions (n>=2); then the procedure-

statement write(f,e1,...,en) shall access the �le-variable and establish a reference to that �le-

41

ISO/IEC 7185:1990(E)

variable for the remaining execution of the statement. The execution of the statement shall

be equivalent to

begin write(�,e1); write(�,e2,...,en) end

where � denotes the referenced �le-variable.

Let f be a �le-variable and e be an expression; then the procedure-statement write(f,e) shall

access the �le-variable and establish a reference to that �le-variable for the remaining execution

of the statement. The execution of the write statement shall be equivalent to

begin �" := e; put(�) end

where � denotes the referenced �le-variable.

NOTES

1 The required procedures read, write, readln, writeln, and page, as applied to text�les, are

described in 6.10.

2 Since the de�nitions of read and write include the use of get and put, the implementation-de�ned

aspects of their post-assertions also apply.

3 A consequence of the de�nition of read and write is that the non-�le parameters are evaluated in

a left-to-right order.

6.6.5.3 Dynamic allocation procedures

new(p)

shall create a new variable that is totally-unde�ned, shall create a new identifying-value of

the pointer-type associated with p, that identi�es the new variable, and shall attribute this

identifying-value to the variable denoted by the variable-access p. The created variable shall

possess the type that is the domain-type of the pointer-type possessed by p.

new(p,c1,...,cn)

shall create a new variable that is totally-unde�ned, shall create a new identifying-value of

the pointer-type associated with p, that identi�es the new variable, and shall attribute this

identifying-value to the variable denoted by the variable-access p. The created variable shall

possess the record-type that is the domain-type of the pointer-type possessed by p and shall

have nested variants that correspond to the case-constants c1,...,cn. The case-constants shall

be listed in order of increasing nesting of the variant-parts. Any variant not speci�ed shall be

at a deeper level of nesting than that speci�ed by cn.

It shall be an error if a variant of a variant-part within the new variable is active and a di�erent

variant of the variant-part is one of the speci�ed variants.

dispose(q)

shall remove the identifying-value denoted by the expression q from the pointer-type of q. It

shall be an error if the identifying-value had been created using the form new(p,c1,...,cn).

dispose(q,k1,...,km)

shall remove the identifying-value denoted by the expression q from the pointer-type of q. The

42

ISO/IEC 7185:1990(E)

case-constants k1,...,km shall be listed in order of increasing nesting of the variant-parts. It

shall be an error unless the variable had been created using the form new(p,c1,...,cn) and m is

equal to n. It shall be an error if the variants in the variable identi�ed by the pointer value of

q are di�erent from those speci�ed by the values denoted by the case-constants k1,...,km.

NOTE | The removal of an identifying-value from the pointer-type to which it belongs renders the identi�ed-

variable inaccessible (see 6.5.4) and makes unde�ned all variables and functions that have that value

attributed (see 6.6.3.2 and 6.8.2.2).

It shall be an error if q has a nil-value or is unde�ned.

It shall be an error if a variable created using the second form of new is accessed by the identi�ed-

variable of the variable-access of a factor, of an assignment-statement, or of an actual-parameter.

6.6.5.4 Transfer procedures

In the statement pack(a,i,z) and in the statement unpack(z,a,i) the following shall hold: a and z

shall be variable-accesses; a shall possess an array-type not designated packed; z shall possess an

array-type designated packed; the component-types of the types of a and z shall be the same; and

the value of the expression i shall be assignment-compatible with the index-type of the type of a.

Let j and k denote auxiliary variables that the program does not otherwise contain and that have the

type that is the index-type of the type of z and a, respectively. Let u and v denote the smallest and

largest values of the index-type of the type of z. Each of the statements pack(a,i,z) and unpack(z,a,i)

shall establish references to the variables denoted by a and z for the remaining execution of the

statements; let aa and zz, respectively, denote the referenced variables within the following sentence.

Then the statement pack(a,i,z) shall be equivalent to

begin

k := i;

for j := u to v do

begin

zz[j] := aa[k];

if j <> v then k := succ(k)

end

end

and the statement unpack(z,a,i) shall be equivalent to

begin

k := i;

for j := u to v do

begin

aa[k] := zz[j];

if j <> v then k := succ(k)

end

end

NOTE | Errors will arise if the references cannot be established, if one or more of the values attributed to

43

ISO/IEC 7185:1990(E)

j is not assignment-compatible with the index-type of the type of a, or if an evaluated array component is

unde�ned.

6.6.6 Required functions

6.6.6.1 General

The required functions shall be arithmetic functions, transfer functions, ordinal functions, and

Boolean functions.

6.6.6.2 Arithmetic functions

For the following arithmetic functions, the expression x shall be either of real-type or integer-type.

For the functions abs and sqr, the type of the result shall be the same as the type of the parameter,

x. For the remaining arithmetic functions, the result shall always be of real-type. The result shall

be as shown in table 2.

Table 2 | Arithmetic function results
Function Result

abs(x) absolute value of x

sqr(x) square of x

It shall be an error if such a value does not exist.

sin(x) sine of x, where x is in radians

cos(x) cosine of x, where x is in radians

exp(x) base of natural logarithms raised to the power x

ln(x) natural logarithm of x, if x is greater than zero

It shall be an error if x is not greater than zero.

sqrt(x) non-negative square root of x, if x is not negative

It shall be an error if x is negative.

arctan(x) principal value, in radians, of the arctangent of x

6.6.6.3 Transfer functions

trunc(x)

From the expression x that shall be of real-type, this function shall return a result of integer-

type. The value of trunc(x) shall be such that if x is positive or zero, then 0�x�trunc(x)<1;
otherwise, �1<x�trunc(x)�0. It shall be an error if such a value does not exist.

Examples:

trunc(3.5) fyields 3g
trunc(-3.5) fyields -3g

round(x)

From the expression x that shall be of real-type, this function shall return a result of integer-

type. If x is positive or zero, round(x) shall be equivalent to trunc(x+0.5); otherwise, round(x)

shall be equivalent to trunc(x�0.5). It shall be an error if such a value does not exist.

44

ISO/IEC 7185:1990(E)

Examples:

round(3.5) fyields 4g
round(-3.5) fyields -4g

6.6.6.4 Ordinal functions

ord(x)

From the expression x that shall be of an ordinal-type, this function shall return a result of

integer-type that shall be the ordinal number (see 6.4.2.2 and 6.4.2.3) of the value of the

expression x.

chr(x)

From the expression x that shall be of integer-type, this function shall return a result of char-

type that shall be the value whose ordinal number is equal to the value of the expression x, if

such a character value exists. It shall be an error if such a character value does not exist. For

any value, ch, of char-type, it shall be true that

chr(ord(ch)) = ch

succ(x)

From the expression x that shall be of an ordinal-type, this function shall return a result that

shall be of the same type as that of the expression (see 6.7.1). The function shall yield a value

whose ordinal number is one greater than that of the expression x, if such a value exists. It

shall be an error if such a value does not exist.

pred(x)

From the expression x that shall be of an ordinal-type, this function shall return a result that

shall be of the same type as that of the expression (see 6.7.1). The function shall yield a value

whose ordinal number is one less than that of the expression x, if such a value exists. It shall

be an error if such a value does not exist.

6.6.6.5 Boolean functions

odd(x)

From the expression x that shall be of integer-type, this function shall be equivalent to the

expression

(abs(x) mod 2 = 1).

eof(f)

The parameter f shall be a �le-variable; if the actual-parameter-list is omitted, the function

shall be applied to the required text�le input (see 6.10) and the program shall contain

a program-parameter-list containing an identi�er with the spelling input. When eof(f) is

activated, it shall be an error if f is unde�ned; otherwise, the function shall yield the value

true if f.R is the empty sequence (see 6.4.3.5); otherwise, false.

eoln(f)

The parameter f shall be a text�le; if the actual-parameter-list is omitted, the function shall

be applied to the required text�le input (see 6.10) and the program shall contain a program-

45

ISO/IEC 7185:1990(E)

parameter-list containing an identi�er with the spelling input. When eoln(f) is activated, it

shall be an error if f is unde�ned or if eof(f) is true; otherwise, the function shall yield the

value true if f.R.�rst is an end-of-line component (see 6.4.3.5); otherwise, false.

6.7 Expressions

6.7.1 General

An expression shall denote a value. The use of a variable-access as a factor shall denote the

value, if any, attributed to the variable accessed thereby. When a factor is used, it shall be an

error if the variable denoted by a variable-access of the factor is unde�ned. Operator precedences

shall be according to four classes of operators as follows. The operator not shall have the highest

precedence, followed by the multiplying-operators, then the adding-operators and signs, and �nally,

with the lowest precedence, the relational-operators. Sequences of two or more operators of the same

precedence shall be left associative.

expression = simple-expression [relational-operator simple-expression] .

simple-expression = [sign] term f adding-operator term g .

term = factor f multiplying-operator factor g .

factor > variable-access j unsigned-constant j function-designator
j set-constructor j `(' expression `)' j `not' factor .

NOTE | 1 There is also a syntax rule for factor in 6.6.3.7.1.

unsigned-constant = unsigned-number j character-string j constant-identi�er j `nil' .

set-constructor = `[' [member-designator f `,' member-designator g] `]' .

member-designator = expression [`..' expression] .

Any factor whose type is S, where S is a subrange of T, shall be treated as if it were of type

T. Similarly, any factor whose type is set of S shall be treated as if it were of the unpacked-

canonical-set-of-T-type, and any factor whose type is packed set of S shall be treated as of the

packed-canonical-set-of-T-type.

A set-constructor shall denote a value of a set-type. The set-constructor [] shall denote the value

in every set-type that contains no members. A set-constructor containing one or more member-

designators shall denote either a value of the unpacked-canonical-set-of-T-type or, if the context

so requires, the packed-canonical-set-of-T-type, where T is the type of every expression of each

member-designator of the set-constructor. The type T shall be an ordinal-type. The value denoted

by the set-constructor shall contain zero or more members, each of which shall be denoted by at

least one member-designator of the set-constructor.

The member-designator x, where x is an expression, shall denote the member that shall be the value

of x. The member-designator x..y, where x and y are expressions, shall denote zero or more members

that shall be the values of the base-type in the closed interval from the value of x to the value of y. The

46

ISO/IEC 7185:1990(E)

order of evaluation of the expressions of a member-designator shall be implementation-dependent.

The order of evaluation of the member-designators of a set-constructor shall be implementation-

dependent.

NOTES

2 The member-designator x..y denotes no members if the value of x is greater than the value of y.

3 The set-constructor [] does not have a single type, but assumes a suitable type to satisfy the assignment-

compatibility rules, or the compatibility rules for operators, if possible.

Examples:

a) Factors:

15

(x + y + z)

sin(x + y)

[red, c, green]

[1, 5, 10..19, 23]

not p

b) Terms:

x * y

i / (1 - i)

(x <= y) and (y < z)

c) Simple Expressions:

p or q

x + y

-x

hue1 + hue2

i * j + 1

d) Expressions:

x = 1.5

p <= q

p = q and r

(i < j) = (j < k)

c in hue1

6.7.2 Operators

6.7.2.1 General

multiplying-operator = `*' j `/' j `div' j `mod' j `and' .

adding-operator = `+' j `�' j `or' .

relational-operator = `=' j `<>' j `<' j `>' j `<=' j `>=' j `in' .

A factor, a term, or a simple-expression shall be designated an operand. The order of evaluation of

47

ISO/IEC 7185:1990(E)

Table 3 | Dyadic arithmetic operations
Operator Operation Type of operands Type of result

+ Addition integer-type

or real-type

- Subtraction integer-type integer-type if both operands

or real-type are of integer-type

* Multiplication integer-type otherwise real-type

or real-type

/ Division integer-type real-type

or real-type

div Division with integer-type integer-type

truncation

mod Modulo integer-type integer-type

Table 4 | Monadic arithmetic operations
Operator Operation Type of operand Type of result

+ Identity integer-type integer-type

real-type real-type

- Sign-inversion integer-type integer-type

real-type real-type

the operands of a dyadic operator shall be implementation-dependent.

NOTE | This means, for example, that the operands may be evaluated in textual order, or in reverse order,

or in parallel, or they may not both be evaluated.

6.7.2.2 Arithmetic operators

The types of operands and results for dyadic and monadic operations shall be as shown in tables 3

and 4 respectively.

NOTE | 1 The symbols +, �, and * are also used as set operators (see 6.7.2.4).

A term of the form x/y shall be an error if y is zero; otherwise, the value of x/y shall be the result

of dividing x by y.

A term of the form i div j shall be an error if j is zero; otherwise, the value of i div j shall be such

that

abs(i) � abs(j) < abs((i div j) * j) <= abs(i)

where the value shall be zero if abs(i) < abs(j); otherwise, the sign of the value shall be positive if i

and j have the same sign and negative if i and j have di�erent signs.

A term of the form i mod j shall be an error if j is zero or negative; otherwise, the value of i mod j

shall be that value of (i�(k*j)) for integral k such that 0 <= i mod j < j.

48

ISO/IEC 7185:1990(E)

Table 5 | Set operations
Operator Operation Type of operands Type of result

+ Set union The same unpacked-canonical-set-of-T-type

- Set di�erence or packed-canonical-set-of-T-type Same as operands

* Set intersection (see 6.7.1)

NOTE | 2 Only for i >= 0 and j > 0 does the relation (i div j) * j + i mod j = i hold.

The required constant-identi�er maxint shall denote an implementation-de�ned value of integer-

type. This value shall satisfy the following conditions.

a) All integral values in the closed interval from �maxint to +maxint shall be values of the

integer-type.

b) Any monadic operation performed on an integer value in this interval shall be correctly

performed according to the mathematical rules for integer arithmetic.

c) Any dyadic integer operation on two integer values in this same interval shall be correctly

performed according to the mathematical rules for integer arithmetic, provided that the result

is also in this interval.

d) Any relational operation on two integer values in this same interval shall be correctly performed

according to the mathematical rules for integer arithmetic.

The results of integer-to-real conversion, of the real arithmetic operators and of the required real

functions shall be approximations to the corresponding mathematical results. The accuracy of this

approximation shall be implementation-de�ned.

It shall be an error if an integer operation or function is not performed according to the mathematical

rules for integer arithmetic.

6.7.2.3 Boolean operators

Operands and results for Boolean operations shall be of Boolean-type. The Boolean operators

or, and, and not shall denote respectively the logical operations of disjunction, conjunction, and

negation.

Boolean-expression = expression .

A Boolean-expression shall be an expression that denotes a value of Boolean-type.

6.7.2.4 Set operators

The types of operands and results for set operations shall be as shown in table 5.

Where x denotes a value of the ordinal-type T and u and v are operands of a canonical-set-of-T-type,

it shall be true for all x that

49

ISO/IEC 7185:1990(E)

Table 6 | Relational operations
Operator Type of operands Type of result

= <> Any simple-type, pointer-type, string-type, Boolean-type

unpacked-canonical-set-of-T-type

or packed-canonical-set-of-T-type

< > Any simple-type or string-type Boolean-type

<= >= Any simple-type, string-type, Boolean-type

unpacked-canonical-set-of-T-type

or packed-canonical-set-of-T-type

in Left operand: any ordinal-type T Boolean-type

right operand: the unpacked-canonical-set-of-T-type

or packed-canonical-set-of-T-type

| x is a member of the value u+v if and only if it is a member of the value of u or a member

of the value of v;

| x is a member of the value u�v if and only if it is a member of the value of u and not a

member of the value of v;

| x is a member of the value u*v if and only if it is a member of the value of u and a member

of the value of v.

6.7.2.5 Relational operators

The types of operands and results for relational operations shall be as shown in table 6.

The operands of =, <>, <, >, >=, and <= shall be of compatible types, or they shall be of the

same unpacked-canonical-set-of-T-type or packed-canonical-set-of-T-type, or one operand shall be

of real-type and the other shall be of integer-type.

The operators =, <>, <, and > shall stand for equal to, not equal to, less than, and greater than

respectively.

Except when applied to sets, the operators <= and >= shall stand for less than or equal to and

greater than or equal to respectively. Where u and v denote operands of a set-type, u <= v shall

denote the inclusion of u in v and u >= v shall denote the inclusion of v in u.

NOTE | Since the Boolean-type is an ordinal-type with false less than true, then if p and q are operands

of Boolean-type, p = q denotes their equivalence and p <= q means p implies q.

When the relational-operators = , <> , < , > , <=, and >= are used to compare operands of

compatible string-types (see 6.4.3.2), they shall denote the lexicographic relations de�ned below.

This lexicographic ordering shall impose a total ordering on values of a string-type.

If s1 and s2 are two values of compatible string-types and n denotes the number of components of

the compatible string-types, then

s1 = s2 i� for all i in [1..n]: s1[i] = s2[i]

50

ISO/IEC 7185:1990(E)

s1 < s2 i� there exists a p in [1..n]:

(for all i in [1..p-1]:

s1[i] = s2[i]) and s1[p] < s2[p]

The de�nitions of operations >, <>, <=, and >= are derived from the de�nitions of = and <.

The operator in shall yield the value true if the value of the operand of ordinal-type is a member of

the value of the set-type; otherwise, it shall yield the value false.

6.7.3 Function-designators

A function-designator shall specify the activation of the block of the function-block associated

with the function-identi�er of the function-designator and shall yield the value of the result of

the activation upon completion of the algorithm of the activation; it shall be an error if the result is

unde�ned upon completion of the algorithm.

NOTE | When a function activation is terminated by a goto-statement (see 6.8.2.4), the algorithm of the

activation does not complete (see 6.2.3.2 a)), and thus there is no error if the result of the activation is

unde�ned.

If the function has any formal-parameters, there shall be an actual parameter-list in the function-

designator. The actual-parameter-list shall be the list of actual-parameters that shall be bound

to their corresponding formal-parameters de�ned in the function-declaration. The correspondence

shall be established by the positions of the parameters in the lists of actual-parameters and formal-

parameters respectively. The number of actual-parameters shall be equal to the number of formal-

parameters. The types of the actual-parameters shall correspond to the types of the formal-

parameters as speci�ed by 6.6.3. The order of evaluation, accessing, and binding of the actual-

parameters shall be implementation-dependent.

function-designator = function-identi�er [actual-parameter-list] .

actual-parameter-list = `(' actual-parameter f `,' actual-parameter g `)' .

actual-parameter = expression j variable-access j procedure-identi�er
j function-identi�er .

Examples:

Sum(a, 63)

GCD(147, k)

sin(x + y)

eof(f)

ord(f")

6.8 Statements

6.8.1 General

Statements shall denote algorithmic actions and shall be executable.

51

ISO/IEC 7185:1990(E)

NOTE | 1 A statement may be pre�xed by a label.

A label, if any, of a statement S shall be designated as pre�xing S. The label shall be permitted

to occur in a goto-statement G (see 6.8.2.4) if and only if any of the following three conditions is

satis�ed.

a) S contains G.

b) S is a statement of a statement-sequence containing G.

c) S is a statement of the statement-sequence of the compound-statement of the statement-part

of a block containing G.

statement = [label `:'] (simple-statement j structured-statement) .

NOTE | 2 A goto-statement within a block may refer to a label in an enclosing block, provided that the

label pre�xes a statement at the outermost level of nesting of the block.

6.8.2 Simple-statements

6.8.2.1 General

A simple-statement shall be a statement not containing a statement. An empty-statement shall

contain no symbol and shall denote no action.

simple-statement = empty-statement j assignment-statement
j procedure-statement j goto-statement .

empty-statement = .

6.8.2.2 Assignment-statements

An assignment-statement shall attribute the value of the expression of the assignment-statement

either to the variable denoted by the variable-access of the assignment-statement or to the activation

result that is denoted by the function-identi�er of the assignment-statement; the value shall be

assignment-compatible with the type possessed, respectively, by the variable or by the activation

result. The function-block associated (see 6.6.2) with the function-identi�er of an assignment-

statement shall contain the assignment-statement.

assignment-statement = (variable-access j function-identi�er) `:=' expression .

The variable-access shall establish a reference to the variable during the execution of the assignment-

statement. The order of establishing the reference to the variable and evaluating the expression shall

be implementation-dependent.

The state of a variable or activation result when the variable or activation result does not have

attributed to it a value speci�ed by its type shall be designated unde�ned. If a variable possesses a

structured-type, the state of the variable when every component of the variable is totally-unde�ned

shall be designated totally-unde�ned. Totally-unde�ned shall be synonymous with unde�ned for an

52

ISO/IEC 7185:1990(E)

activation result or a variable that does not possess a structured-type.

Examples:

x := y + z

p := (1 <= i) and (i < 100)

i := sqr(k) - (i * j)

hue1 := [blue, succ(c)]

p1".mother := true

6.8.2.3 Procedure-statements

A procedure-statement shall specify the activation of the block of the procedure-block associated with

the procedure-identi�er of the procedure-statement. If the procedure has any formal-parameters,

the procedure-statement shall contain an actual-parameter-list, which is the list of actual-parameters

that shall be bound to their corresponding formal-parameters de�ned in the procedure-declaration.

The correspondence shall be established by the positions of the parameters in the lists of actual-

parameters and formal-parameters respectively. The number of actual-parameters shall be equal to

the number of formal-parameters. The types of the actual-parameters shall correspond to the types

of the formal-parameters as speci�ed by 6.6.3.

The order of evaluation, accessing, and binding of the actual-parameters shall be implementation-

dependent.

The procedure-identi�er in a procedure-statement containing a read-parameter-list shall denote the

required procedure read; the procedure-identi�er in a procedure-statement containing a readln-

parameter-list shall denote the required procedure readln; the procedure-identi�er in a procedure-

statement containing a write-parameter-list shall denote the required procedurewrite; the procedure-

identi�er in a procedure-statement containing a writeln-parameter-list shall denote the required

procedure writeln.

procedure-statement = procedure-identi�er ([actual-parameter-list]

j read-parameter-list j readln-parameter-list
j write-parameter-list j writeln-parameter-list) .

Examples:

printheading

transpose(a, n, m)

bisect(fct, -1.0, +1.0, x)

AddVectors(m[1], m[2], m[k])

NOTE | The fourth example is not for level 0.

6.8.2.4 Goto-statements

A goto-statement shall indicate that further processing is to continue at the program-point denoted

by the label in the goto-statement and shall cause the termination of all activations except

a) the activation containing the program-point; and

53

ISO/IEC 7185:1990(E)

b) any activation containing the activation-point of an activation required by exceptions a) or b)

not to be terminated.

goto-statement = `goto' label .

6.8.3 Structured-statements

6.8.3.1 General

structured-statement = compound-statement j conditional-statement
j repetitive-statement j with-statement .

statement-sequence = statement f `;' statement g .

The execution of a statement-sequence shall specify the execution of the statements of the statement-

sequence in textual order, except as modi�ed by execution of a goto-statement.

6.8.3.2 Compound-statements

A compound-statement shall specify execution of the statement-sequence of the compound-statement.

compound-statement = `begin' statement-sequence `end' .

Example:

begin z := x; x := y; y := z end

6.8.3.3 Conditional-statements

conditional-statement = if-statement j case-statement .

6.8.3.4 If-statements

if-statement = `if' Boolean-expression `then' statement [else-part] .

else-part = `else' statement .

If the Boolean-expression of the if-statement yields the value true, the statement of the if-statement

shall be executed. If the Boolean-expression yields the value false, the statement of the if-statement

shall not be executed, and the statement of the else-part, if any, shall be executed.

An if-statement without an else-part shall not be immediately followed by the token else.

NOTE | An else-part is thus paired with the nearest preceding otherwise unpaired then.

Examples:

if x < 1.5 then z := x + y else z := 1.5

if p1 <> nil then p1 := p1".father

54

ISO/IEC 7185:1990(E)

if j = 0 then

if i = 0 then writeln('indefinite')

else writeln('infinite')

else writeln(i / j)

6.8.3.5 Case-statements

The values denoted by the case-constants of the case-constant-lists of the case-list-elements of a

case-statement shall be distinct and of the same ordinal-type as the expression of the case-index

of the case-statement. On execution of the case-statement the case-index shall be evaluated. That

value shall then specify execution of the statement of the case-list-element closest-containing the

case-constant denoting that value. One of the case-constants shall be equal to the value of the

case-index upon entry to the case-statement; otherwise, it shall be an error.

NOTE | Case-constants are not the same as statement labels.

case-statement = `case' case-index `of' case-list-element

f `;' case-list-element g [`;'] `end' .

case-list-element = case-constant-list `:' statement .

case-index = expression .

Example:

case operator of

plus: x := x + y;

minus: x := x - y;

times: x := x * y

end

6.8.3.6 Repetitive-statements

Repetitive-statements shall specify that certain statements are to be executed repeatedly.

repetitive-statement = repeat-statement j while-statement j for-statement .

6.8.3.7 Repeat-statements

repeat-statement = `repeat' statement-sequence `until' Boolean-expression .

The statement-sequence of the repeat-statement shall be repeatedly executed, except as modi�ed by

the execution of a goto-statement, until the Boolean-expression of the repeat-statement yields the

value true on completion of the statement-sequence. The statement-sequence shall be executed at

least once, because the Boolean-expression is evaluated after execution of the statement-sequence.

Example:

repeat

k := i mod j;

55

ISO/IEC 7185:1990(E)

i := j;

j := k

until j = 0

6.8.3.8 While-statements

while-statement = `while' Boolean-expression `do' statement .

The while-statement

while b do body

shall be equivalent to

begin

if b then

repeat

body

until not (b)

end

Examples:

while i > 0 do

begin if odd(i) then z := z * x;

i := i div 2;

x := sqr(x)

end

while not eof(f) do

begin process(f"); get(f)

end

6.8.3.9 For-statements

The for-statement shall specify that the statement of the for-statement is to be repeatedly executed

while a progression of values is attributed to a variable denoted by the control-variable of the for-

statement.

for-statement = `for' control-variable `:=' initial-value (`to' j `downto') �nal-value

`do' statement .

control-variable = entire-variable .

initial-value = expression .

�nal-value = expression .

The control-variable shall be an entire-variable whose identi�er is declared in the variable-declaration-

part of the block closest-containing the for-statement. The control-variable shall possess an ordinal-

56

ISO/IEC 7185:1990(E)

type, and the initial-value and �nal-value shall be of a type compatible with this type. The

initial-value and the �nal-value shall be assignment-compatible with the type possessed by the

control-variable if the statement of the for-statement is executed. After a for-statement is executed,

other than being left by a goto-statement, the control-variable shall be unde�ned. Neither a for-

statement nor any procedure-and-function-declaration-part of the block that closest-contains a for-

statement shall contain a statement threatening the variable denoted by the control-variable of the

for-statement.

A statement S shall be designated as threatening a variable V if one or more of the following

statements is true.

a) S is an assignment-statement and V is denoted by the variable-access of S.

b) S contains an actual variable parameter that denotes V.

c) S is a procedure-statement that speci�es the activation of the required procedure read or the

required procedure readln, and V is denoted by variable-access of a read-parameter-list or

readln-parameter-list of S.

d) S is a statement speci�ed using an equivalent program fragment containing a statement

threatening V.

Apart from the restrictions imposed by these requirements, the for-statement

for v := e1 to e2 do body

shall be equivalent to

begin

temp1 := e1;

temp2 := e2;

if temp1 <= temp2 then

begin

v := temp1;

body;

while v <> temp2 do

begin

v := succ(v);

body

end

end

end

and the for-statement

for v := e1 downto e2 do body

shall be equivalent to

begin

temp1 := e1;

57

ISO/IEC 7185:1990(E)

temp2 := e2;

if temp1 >= temp2 then

begin

v := temp1;

body;

while v <> temp2 do

begin

v := pred(v);

body

end

end

end

where temp1 and temp2 denote auxiliary variables that the program does not otherwise contain,

and that possess the type possessed by the variable v if that type is not a subrange-type; otherwise

the host-type of the type possessed by the variable v.

Examples:

for i := 2 to 63 do

if a[i] > max then max := a[i]

for i := 1 to 10 do

for j := 1 to 10 do

begin

x := 0;

for k := 1 to 10 do

x := x + m1[i,k] * m2[k,j];

m[i,j] := x

end

for i := 1 to 10 do

for j := 1 to i - 1 do

m[i][j] := 0.0

for c := blue downto red do

q(c)

6.8.3.10 With-statements

with-statement = `with' record-variable-list `do' statement .

record-variable-list = record-variable f `,' record-variable g .

�eld-designator-identi�er = identi�er .

A with-statement shall specify the execution of the statement of the with-statement. The occurrence

of a record-variable as the only record-variable in the record-variable-list of a with-statement shall

58

ISO/IEC 7185:1990(E)

constitute the de�ning-point of each of the �eld-identi�ers associated with components of the

record-type possessed by the record-variable as a �eld-designator-identi�er for the region that is the

statement of the with-statement; each applied occurrence of a �eld-designator-identi�er shall denote

that component of the record-variable that is associated with the �eld-identi�er by the record-type.

The record-variable shall be accessed before the statement of the with-statement is executed, and

that access shall establish a reference to the variable during the entire execution of the statement of

the with-statement.

The statement

with v1,v2,...,vn do s

shall be equivalent to

with v1 do

with v2 do

...

with vn do s

Example:

with date do

if month = 12 then

begin month := 1; year := year + 1

end

else month := month+1

has the same e�ect on the variable date as

if date.month = 12 then

begin date.month := 1; date.year := date.year+1

end

else date.month := date.month+1

6.9 Input and output

6.9.1 The procedure read

The syntax of the parameter list of read when applied to a text�le shall be

read-parameter-list = `(' [�le-variable `,'] variable-access f `,' variable-access g `)' .

If the �le-variable is omitted, the procedure shall be applied to the required text�le input, and the

program shall contain a program-parameter-list containing an identi�er with the spelling input.

The requirements of this subclause shall apply for the procedure read when applied to a text�le;

therein, f shall denote the text�le. The e�ects of applying read(f,v) to the text�le f shall be de�ned by

pre-assertions and post-assertions within the requirements of 6.6.5.2. The pre-assertion of read(f,v)

shall be the pre-assertion of get(f). Let t denote a sequence of components having the char-type; let

r, s, and u each denote a value of the sequence-type de�ned by the structure of the type denoted by

59

ISO/IEC 7185:1990(E)

text; if u = S(), then let t = S(); otherwise, let u.�rst = end-of-line; let w = f0" or w = f0.R.�rst,

where the decision as to which shall be implementation-dependent; and let r ~s ~t ~u = w ~f0.R.rest.

The post-assertion of read(f,v) shall be

(f.M = f0.M) and (f.L ~ f.R = f0.L ~ f0.R) and (f.R = t ~ u) and

(if f.R = S() then (f" is totally-unde�ned) else (f" = f.R.�rst)).

NOTE | 1 The variable-access is not a variable parameter. Consequently, it may be a component of a

packed structure, and the value of the bu�er-variable need only be assignment-compatible with it.

a) For n>=1, read(f,v1,...,vn) shall access the text�le and establish a reference to that text�le for the

remaining execution of the statement; each of v1,...,vn shall be a variable-access possessing a type

that is the real-type, is a string-type, or is compatible with the char-type or with the integer-type.

For n>=2, the execution of read(f,v1,...,vn) shall be equivalent to

begin read(�,v1); read(�,v2,...,vn) end

where � denotes the referenced text�le.

b) If v is a variable-access possessing the char-type (or subrange thereof), the execution of read(f,v)

shall be equivalent to

begin v := �"; get(�) end

where � denotes the referenced text�le.

NOTE | 2 To satisfy the post-assertions of get and of read(f,v) requires r = S() and length(s) = 1.

c) If v is a variable-access possessing the integer-type (or subrange thereof), read(f,v) shall satisfy

the following requirements. No component of s shall equal end-of-line. The components of r, if any,

shall each, and (s ~t ~u).�rst shall not, equal either the char-type value space or end-of-line. Either

s shall be empty or s shall, and s ~S(t.�rst) shall not, form a signed-integer according to the syntax

of 6.1.5. It shall be an error if s is empty. The value of the signed-integer thus formed shall be

assignment-compatible with the type possessed by v and shall be attributed to v.

NOTE | 3 The sequence r represents any spaces and end-of-lines to be skipped, and the sequence s

represents the signed-integer to be read.

d) If v is a variable-access possessing the real-type, read(f,v) shall satisfy the following requirements.

No component of s shall equal end-of-line. The components of r, if any, shall each, and (s ~t ~u).�rst

shall not, equal either the char-type value space or end-of-line. Either s shall be empty or s shall,

and s ~S(t.�rst) shall not, form a signed-number according to the syntax of 6.1.5. It shall be an

error if s is empty. The value denoted by the number thus formed shall be attributed to the variable

v.

NOTE | 4 The sequence r represents any spaces and end-of-lines to be skipped, and the sequence s

represents the number to be read.

60

ISO/IEC 7185:1990(E)

6.9.2 The procedure readln

The syntax of the parameter list of readln shall be

readln-parameter-list = [`(' (�le-variable j variable-access)

f `,' variable-access g `)'] .

Readln shall only be applied to text�les. If the �le-variable or the entire readln-parameter-list is

omitted, the procedure shall be applied to the required text�le input, and the program shall contain

a program-parameter-list containing an identi�er with the spelling input.

Readln(f,v1,...,vn) shall access the text�le and establish a reference to that text�le for the remaining

execution of the statement. The execution of the statement shall be equivalent to

begin read(�,v1,...,vn); readln(�) end

where � denotes the referenced text�le.

Readln(f) shall access the text�le and establish a reference to that text�le for the remaining execution

of the statement. The execution of the statement shall be equivalent to

begin while not eoln(�) do get(�); get(�) end

where � denotes the referenced text�le.

NOTES

1 The e�ect of readln is to place the current �le position just past the end of the current line in the text�le.

Unless this is the end-of-�le position, the current �le position is therefore at the start of the next line.

2 Because the de�nition of readlnmakes use of get, the implementation-de�ned aspects of the post-assertion

of get also apply (see 6.6.5.2).

6.9.3 The procedure write

The syntax of the parameter list of write when applied to a text�le shall be

write-parameter-list = `(' [�le-variable `,'] write-parameter

f `,' write-parameter g `)' .

write-parameter = expression [`:' expression [`:' expression]] .

If the �le-variable is omitted, the procedure shall be applied to the required text�le output, and the

program shall contain a program-parameter-list containing an identi�er with the spelling output.

When write is applied to a text�le f, it shall be an error if f is unde�ned or f.M = Inspection (see

6.4.3.5).

For n>=1, write(f,p1,...,pn) shall access the text�le and establish a reference to that text�le for the

remaining execution of the statement. For n>=2, the execution of the statement shall be equivalent

to

begin write(�,p1); write(�,p2,...,pn) end

61

ISO/IEC 7185:1990(E)

where � denotes the referenced text�le.

Write(f,p), where f denotes a text�le and p is a write-parameter, shall write a sequence of zero or

more characters on the text�le f; for each character c in the sequence, the equivalent of

begin �" := c; put(�) end

where � denotes the referenced text�le, shall be applied to the text�le f. The sequence of characters

written shall be a representation of the value of the �rst expression in the write-parameter p, as

speci�ed in the remainder of this subclause.

NOTE | Because the de�nition of write includes the use of put, the implementation-de�ned aspects of

the post-assertion of put also apply (see 6.6.5.2).

6.9.3.1 Write-parameters

A write-parameter shall have one of the following forms

e : TotalWidth : FracDigits

e : TotalWidth

e

where e shall be an expression whose value is to be written on the �le f and shall be of integer-

type, real-type, char-type, Boolean-type, or a string-type, and where TotalWidth and FracDigits

shall be expressions of integer-type whose values shall be the �eld-width parameters. The values of

TotalWidth and FracDigits shall be greater than or equal to one; it shall be an error if either value

is less than one.

Write(f,e) shall be equivalent to the form write(f,e : TotalWidth), using a default value for TotalWidth

that depends on the type of e; for integer-type, real-type, and Boolean-type, the default values shall

be implementation-de�ned.

Write(f,e : TotalWidth : FracDigits) shall be applicable only if e is of real-type (see 6.9.3.4.2).

6.9.3.2 Char-type

If e is of char-type, the default value of TotalWidth shall be one. The representation written on the

�le f shall be

(TotalWidth � 1) spaces, the character value of e.

6.9.3.3 Integer-type

If e is of integer-type, the decimal representation of the value of e shall be written on the �le f.

Assume a function

function IntegerSize (x : integer) : integer ;

f returns the number of digits, z, such that

10 to the power (z�1) � abs(x) < 10 to the power z g

62

ISO/IEC 7185:1990(E)

and let IntDigits be the positive integer de�ned by

if e = 0

then IntDigits := 1

else IntDigits := IntegerSize(e);

then the representation shall consist of

a) if TotalWidth >= IntDigits + 1:

(TotalWidth � IntDigits � 1) spaces,

the sign character: `�' if e < 0, otherwise a space,

IntDigits digit-characters of the decimal representation of abs(e).

b) if TotalWidth < IntDigits + 1:

if e < 0 the sign character `�',

IntDigits digit-characters of the decimal representation of abs(e).

6.9.3.4 Real-type

If e is of real-type, a decimal representation of the value of e, rounded to the speci�ed number of

signi�cant �gures or decimal places, shall be written on the �le f.

6.9.3.4.1 The oating-point representation

Write(f,e : TotalWidth) shall cause a oating-point representation of the value of e to be written.

Assume functions

function TenPower (Int : integer) : real ;

f Returns 10.0 raised to the power Int g

function RealSize (y : real) : integer ;

f Returns the value, z, such that TenPower(z�1) � abs(y) <

TenPower(z) g

function Truncate (y : real ; DecPlaces : integer) : real ;

f Returns the value of y after truncation to DecPlaces decimal places g

let ExpDigits be an implementation-de�ned value representing the number of digit-characters written

in an exponent;

let ActWidth be the positive integer de�ned by

if TotalWidth >= ExpDigits + 6

then ActWidth := TotalWidth

else ActWidth := ExpDigits + 6;

and let the non-negative number eWritten, the positive integer DecPlaces, and the integer ExpValue

be de�ned by

63

ISO/IEC 7185:1990(E)

DecPlaces := ActWidth � ExpDigits � 5;

if e = 0.0

then begin eWritten := 0.0; ExpValue := 0 end

else

begin

eWritten := abs(e);

ExpValue := RealSize (eWritten) � 1;

eWritten := eWritten / TenPower (ExpValue);

eWritten := eWritten + 0.5 * TenPower (�DecPlaces);

if eWritten >= 10.0

then

begin

eWritten := eWritten / 10.0;

ExpValue := ExpValue + 1

end;

eWritten := Truncate (eWritten, DecPlaces)

end;

then the oating-point representation of the value of e shall consist of

the sign character

(`�' if (e < 0.0) and (eWritten > 0.0), otherwise a space),

the leading digit-character of the decimal representation of eWritten,

the character `.' ,

the next DecPlaces digit-characters of the decimal representation of

eWritten,

an implementation-de�ned exponent character

(either `e' or `E'),

the sign of ExpValue

(`�' if ExpValue < 0, otherwise `+'),

the ExpDigits digit-characters of the decimal representation of

ExpValue (with leading zeros if the value requires them).

6.9.3.4.2 The �xed-point representation

Write(f,e : TotalWidth : FracDigits) shall cause a �xed-point representation of the value of e to be

written. Assume the functions TenPower, RealSize, and Truncate described in 6.9.3.4.1;

let eWritten be the non-negative number de�ned by

if e = 0.0

then eWritten := 0.0

else

begin

eWritten := abs(e);

eWritten := eWritten + 0.5 * TenPower (� FracDigits);

eWritten := Truncate (eWritten, FracDigits)

64

ISO/IEC 7185:1990(E)

end;

let IntDigits be the positive integer de�ned by

if RealSize (eWritten) < 1

then IntDigits := 1

else IntDigits := RealSize (eWritten);

and let MinNumChars be the positive integer de�ned by

MinNumChars := IntDigits + FracDigits + 1;

if (e < 0.0) and (eWritten > 0.0)

then MinNumChars := MinNumChars + 1; f`�' requiredg

then the �xed-point representation of the value of e shall consist of

if TotalWidth >= MinNumChars,

(TotalWidth � MinNumChars) spaces,

the character `�' if (e < 0.0) and (eWritten > 0.0),

the �rst IntDigits digit-characters of the decimal representation of

the value of eWritten,

the character `.',

the next FracDigits digit-characters of the decimal representation of

the value of eWritten.

NOTE | At least MinNumChars characters are written. If TotalWidth is less than this value, no initial

spaces are written.

6.9.3.5 Boolean-type

If e is of Boolean-type, a representation of the word true or the word false (as appropriate to the value

of e) shall be written on the �le f. This shall be equivalent to writing the appropriate character-string

'True' or 'False' (see 6.9.3.6), where the case of each letter is implementation-de�ned, with a

�eld-width parameter of TotalWidth.

6.9.3.6 String-types

If the type of e is a string-type with n components, the default value of TotalWidth shall be n. The

representation shall consist of

if TotalWidth > n,

(TotalWidth � n) spaces,

the �rst through n-th characters of the value of e in that order.

if 1 <= TotalWidth <= n,

the �rst through TotalWidth-th characters in that order.

6.9.4 The procedure writeln

The syntax of the parameter list of writeln shall be

65

ISO/IEC 7185:1990(E)

writeln-parameter-list = [`(' (�le-variable j write-parameter)

f `,' write-parameter g `)'] .

Writeln shall only be applied to text�les. If the �le-variable or the writeln-parameter-list is omitted,

the procedure shall be applied to the required text�le output, and the program shall contain a

program-parameter-list containing an identi�er with the spelling output.

Writeln(f,p1,...,pn) shall access the text�le and establish a reference to that text�le for the remaining

execution of the statement. The execution of the statement shall be equivalent to

begin write(�,p1,...,pn); writeln(�) end

where � denotes the referenced text�le.

Writeln shall be de�ned by a pre-assertion and a post-assertion using the notation of 6.6.5.2.

pre-assertion: (f0 is not unde�ned) and (f0.M = Generation) and (f0.R = S()).

post-assertion: (f.L = (f0.L ~ S(end-of-line))) and (f" is totally-unde�ned)

and (f.R = S()) and (f.M = Generation),

where S(e) is the sequence consisting solely of the end-of-line component de�ned in 6.4.3.5.

NOTE | Writeln(f) terminates the partial line, if any, that is being generated. By the conventions of

6.6.5.2 it is an error if the pre-assertion is not true prior to writeln(f).

6.9.5 The procedure page

It shall be an error if the pre-assertion required for writeln(f) (see 6.9.4) does not hold prior to

the activation of page(f). If the actual-parameter-list is omitted, the procedure shall be applied to

the required text�le output, and the program shall contain a program-parameter-list containing

an identi�er with the spelling output. Page(f) shall cause an implementation-de�ned e�ect on the

text�le f, such that subsequent text written to f will be on a new page if the text�le is printed on a

suitable device, shall perform an implicit writeln(f) if f.L is not empty and if f.L.last is not the end-

of-line component (see 6.4.3.5), and shall cause the bu�er-variable f" to become totally-unde�ned.

The e�ect of inspecting a text�le to which the page procedure was applied during generation shall

be implementation-dependent.

6.10 Programs

program = program-heading `;' program-block `.' .

program-heading = `program' identi�er [`(' program-parameter-list `)'] .

program-parameter-list = identi�er-list .

program-block = block .

The identi�er of the program-heading shall be the program name. It shall have no signi�cance

within the program. The identi�ers contained by the program-parameter-list shall be distinct and

66

ISO/IEC 7185:1990(E)

shall be designated program-parameters. Each program-parameter shall have a de�ning-point as a

variable-identi�er for the region that is the program-block. The binding of the variables denoted

by the program-parameters to entities external to the program shall be implementation-dependent,

except if the variable possesses a �le-type in which case the binding shall be implementation-de�ned.

NOTE | The external representation of such external entities is not de�ned by this International Standard.

The execution of any action, operation, or function, de�ned within clause 6 to operate on a variable,

shall be an error if the variable is a program-parameter and, as a result of the binding of the

program-parameter, the execution cannot be completed as de�ned.

The occurrence of the required identi�er input or output as a program-parameter shall constitute

its de�ning-point for the region that is the program-block as a variable-identi�er of the required type

denoted by the required type-identi�er text. Such occurrence of the identi�er input shall cause

the post-assertions of reset to hold, and of output, the post-assertions of rewrite to hold, prior

to the �rst access to the text�le or its associated bu�er-variable. The e�ect of the application of

the required procedure reset or the required procedure rewrite to either of these text�les shall be

implementation-de�ned.

Examples:

program copy (f, g);

var f, g : file of real;

begin reset(f); rewrite(g);

while not eof(f) do

begin g" := f"; get(f); put(g)

end

end.

program copytext (input, output);

fThis program copies the characters and line structure of the textfile

input to the textfile output.g
var ch : char;

begin

while not eof do

begin

while not eoln do

begin read(ch); write(ch)

end;

readln; writeln

end

end.

program t6p6p3p4 (output);

var globalone, globaltwo : integer;

procedure dummy;

67

ISO/IEC 7185:1990(E)

begin

writeln('fail4')

end f of dummy g;

procedure p (procedure f(procedure ff; procedure gg); procedure g);

var localtop : integer;

procedure r;

begin f r g
if globalone = 1 then

begin

if (globaltwo <> 2) or (localtop <> 1) then

writeln('fail1')

end

else if globalone = 2 then

begin

if (globaltwo <> 2) or (localtop <> 2) then

writeln('fail2')

else

writeln('pass')

end

else

writeln('fail3');

globalone := globalone + 1

end f of r g;
begin f of p g
globaltwo := globaltwo + 1;

localtop := globaltwo;

if globaltwo = 1 then

p(f, r)

else

f(g, r)

end f of pg;

procedure q (procedure f; procedure g);

begin

f;

g

end f of qg;

begin f of t6p6p3p4 g
globalone := 1;

globaltwo := 0;

p(q, dummy)

end. f of t6p6p3p4 g

68

ISO/IEC 7185:1990(E)

Annex A

(Informative)

Collected syntax

The nonterminal symbols pointer-type, program, signed-number, simple-type, special-symbol, and

structured-type are only referenced by the semantics and are not used in the right-hand-side of any

production. The nonterminal symbol program is the start symbol of the grammar.

6.7.3 actual-parameter = expression j variable-access j procedure-identi�er
j function-identi�er .

6.7.3 actual-parameter-list = `(' actual-parameter f `,' actual-parameter g `)' .

6.7.2.1 adding-operator = `+' j `�' j `or' .

6.1.7 apostrophe-image = `"' .

6.4.3.2 array-type = `array' `[' index-type f `,' index-type g `]' `of' component-type .

6.5.3.2 array-variable = variable-access .

6.8.2.2 assignment-statement = (variable-access j function-identi�er) `:=' expression .

6.4.3.4 base-type = ordinal-type .

6.2.1 block = label-declaration-part constant-de�nition-part type-de�nition-part

variable-declaration-part procedure-and-function-declaration-part

statement-part .

6.7.2.3 Boolean-expression = expression .

6.6.3.7.1 bound-identi�er = identi�er .

6.5.5 bu�er-variable = �le-variable `"' .

6.4.3.3 case-constant = constant .

6.4.3.3 case-constant-list = case-constant f `,' case-constant g .

6.8.3.5 case-index = expression .

6.8.3.5 case-list-element = case-constant-list `:' statement .

6.8.3.5 case-statement = `case' case-index `of' case-list-element

f `;' case-list-element g [`;'] `end' .

6.1.7 character-string = `'' string-element f string-element g `'' .

6.4.3.2 component-type = type-denoter .

69

ISO/IEC 7185:1990(E)

6.5.3.1 component-variable = indexed-variable j �eld-designator .

6.8.3.2 compound-statement = `begin' statement-sequence `end' .

6.8.3.3 conditional-statement = if-statement j case-statement .

6.6.3.7.1 conformant-array-parameter-speci�cation = value-conformant-array-speci�cation

j variable-conformant-array-speci�cation .

6.6.3.7.1 conformant-array-schema = packed-conformant-array-schema

j unpacked-conformant-array-schema .

6.3 constant = [sign] (unsigned-number j constant-identi�er)

j character-string .

6.3 constant-de�nition = identi�er `=' constant .

6.2.1 constant-de�nition-part = [`const' constant-de�nition `;' f constant-de�nition `;' g] .

6.3 constant-identi�er = identi�er .

6.8.3.9 control-variable = entire-variable .

6.1.1 digit = `0' j `1' j `2' j `3' j `4' j `5' j `6' j `7' j `8' j `9' .

6.1.5 digit-sequence = digit f digit g .

6.1.4 directive = letter f letter j digit g .

6.4.4 domain-type = type-identi�er .

6.8.3.4 else-part = `else' statement .

6.8.2.1 empty-statement = .

6.5.2 entire-variable = variable-identi�er .

6.4.2.3 enumerated-type = `(' identi�er-list `)' .

6.7.1 expression = simple-expression [relational-operator simple-expression] .

6.6.3.7.1 factor > bound-identi�er .

6.7.1 factor > variable-access j unsigned-constant j function-designator
j set-constructor j `(' expression `)' j `not' factor .

6.5.3.3 �eld-designator = record-variable `.' �eld-speci�er j �eld-designator-identi�er .

6.8.3.10 �eld-designator-identi�er = identi�er .

6.5.3.3 �eld-identi�er = identi�er .

6.4.3.3 �eld-list = [(�xed-part [`;' variant-part] j variant-part) [`;']] .

70

ISO/IEC 7185:1990(E)

6.5.3.3 �eld-speci�er = �eld-identi�er .

6.4.3.5 �le-type = `�le' `of' component-type .

6.5.5 �le-variable = variable-access .

6.8.3.9 �nal-value = expression .

6.4.3.3 �xed-part = record-section f `;' record-section g .

6.8.3.9 for-statement = `for' control-variable `:=' initial-value (`to' j `downto') �nal-value

`do' statement .

6.6.3.1 formal-parameter-list = `(' formal-parameter-section f `;' formal-parameter-section g `)' .

6.6.3.1 formal-parameter-section > value-parameter-speci�cation

j variable-parameter-speci�cation

j procedural-parameter-speci�cation

j functional-parameter-speci�cation .

6.6.3.7.1 formal-parameter-section > conformant-array-parameter-speci�cation .

6.1.5 fractional-part = digit-sequence .

6.6.2 function-block = block .

6.6.2 function-declaration = function-heading `;' directive

j function-identi�cation `;' function-block

j function-heading `;' function-block .

6.7.3 function-designator = function-identi�er [actual-parameter-list] .

6.6.2 function-heading = `function' identi�er [formal-parameter-list] `:' result-type .

6.6.2 function-identi�cation = `function' function-identi�er .

6.6.2 function-identi�er = identi�er .

6.6.3.1 functional-parameter-speci�cation = function-heading .

6.8.2.4 goto-statement = `goto' label .

6.5.4 identi�ed-variable = pointer-variable `"' .

6.1.3 identi�er = letter f letter j digit g .

6.4.2.3 identi�er-list = identi�er f `,' identi�er g .

6.8.3.4 if-statement = `if' Boolean-expression `then' statement [else-part] .

6.5.3.2 index-expression = expression .

71

ISO/IEC 7185:1990(E)

6.4.3.2 index-type = ordinal-type .

6.6.3.7.1 index-type-speci�cation = identi�er `..' identi�er `:' ordinal-type-identi�er .

6.5.3.2 indexed-variable = array-variable `[' index-expression, f `,' index-expression g `]' .

6.8.3.9 initial-value = expression .

6.1.6 label = digit-sequence .

6.2.1 label-declaration-part = [`label' label f `,' label g `;'] .

6.1.1 letter = `a' j `b' j `c' j `d' j `e' j `f' j `g' j `h' j `i' j `j'
j `k' j `l' j `m' j `n' j `o' j `p' j `q' j `r' j `s' j `t'
j `u' j `v' j `w' j `x' j `y' j `z' .

6.7.1 member-designator = expression [`..' expression] .

6.7.2.1 multiplying-operator = `*' j `/' j `div' j `mod' j `and' .

6.4.2.1 new-ordinal-type = enumerated-type j subrange-type .

6.4.4 new-pointer-type = `"' domain-type .

6.4.3.1 new-structured-type = [`packed'] unpacked-structured-type .

6.4.1 new-type = new-ordinal-type j new-structured-type j new-pointer-type .

6.4.2.1 ordinal-type = new-ordinal-type j ordinal-type-identi�er .

6.4.2.1 ordinal-type-identi�er = type-identi�er .

6.6.3.7.1 packed-conformant-array-schema = `packed' `array' `[' index-type-speci�cation `]'

`of' type-identi�er .

6.4.4 pointer-type = new-pointer-type j pointer-type-identi�er .

6.4.1 pointer-type-identi�er = type-identi�er .

6.5.4 pointer-variable = variable-access .

6.6.3.1 procedural-parameter-speci�cation = procedure-heading .

6.2.1 procedure-and-function-declaration-part = f (procedure-declaration

j function-declaration) `;' g .

6.6.1 procedure-block = block .

6.6.1 procedure-declaration = procedure-heading `;' directive

j procedure-identi�cation `;' procedure-block

j procedure-heading `;' procedure-block .

72

ISO/IEC 7185:1990(E)

6.6.1 procedure-heading = `procedure' identi�er [formal-parameter-list] .

6.6.1 procedure-identi�cation = `procedure' procedure-identi�er .

6.6.1 procedure-identi�er = identi�er .

6.8.2.3 procedure-statement = procedure-identi�er ([actual-parameter-list]

j read-parameter-list j readln-parameter-list
j write-parameter-list j writeln-parameter-list) .

6.10 program = program-heading `;' program-block `.' .

6.10 program-block = block .

6.10 program-heading = `program' identi�er [`(' program-parameter-list `)'] .

6.10 program-parameter-list = identi�er-list .

6.9.1 read-parameter-list = `(' [�le-variable `,'] variable-access f `,' variable-access g `)' .

6.9.2 readln-parameter-list = [`(' (�le-variable j variable-access)

f `,' variable-access g `)'] .

6.4.2.1 real-type-identi�er = type-identi�er .

6.4.3.3 record-section = identi�er-list `:' type-denoter .

6.4.3.3 record-type = `record' �eld-list `end' .

6.5.3.3 record-variable = variable-access .

6.8.3.10 record-variable-list = record-variable f `,' record-variable g .

6.7.2.1 relational-operator = `=' j `<>' j `<' j `>' j `<=' j `>=' j `in' .

6.8.3.7 repeat-statement = `repeat' statement-sequence `until' Boolean-expression .

6.8.3.6 repetitive-statement = repeat-statement j while-statement j for-statement .

6.6.2 result-type = simple-type-identi�er j pointer-type-identi�er .

6.1.5 scale-factor = [sign] digit-sequence .

6.7.1 set-constructor = `[' [member-designator f `,' member-designator g] `]' .

6.4.3.4 set-type = `set' `of' base-type .

6.1.5 sign = `+' j `�' .

6.1.5 signed-integer = [sign] unsigned-integer .

6.1.5 signed-number = signed-integer j signed-real .

73

ISO/IEC 7185:1990(E)

6.1.5 signed-real = [sign] unsigned-real .

6.7.1 simple-expression = [sign] term f adding-operator term g .

6.8.2.1 simple-statement = empty-statement j assignment-statement
j procedure-statement j goto-statement .

6.4.2.1 simple-type = ordinal-type j real-type-identi�er .

6.4.1 simple-type-identi�er = type-identi�er .

6.1.2 special-symbol = `+' j `�' j `*' j `/' j `=' j `<' j `>' j `[' j `]'
j `.' j `,' j `:' j `;' j `"' j `(' j `)'
j `<>' j `<=' j `>=' j `:=' j `..' j word-symbol .

6.8.1 statement = [label `:'] (simple-statement j structured-statement) .

6.2.1 statement-part = compound-statement .

6.8.3.1 statement-sequence = statement f `;' statement g .

6.1.7 string-character = one-of-a-set-of-implementation-de�ned-characters .

6.1.7 string-element = apostrophe-image j string-character .

6.8.3.1 structured-statement = compound-statement j conditional-statement
j repetitive-statement j with-statement .

6.4.3.1 structured-type = new-structured-type j structured-type-identi�er .

6.4.1 structured-type-identi�er = type-identi�er .

6.4.2.4 subrange-type = constant `..' constant .

6.4.3.3 tag-�eld = identi�er .

6.4.3.3 tag-type = ordinal-type-identi�er .

6.7.1 term = factor f multiplying-operator factor g .

6.4.1 type-de�nition = identi�er `=' type-denoter .

6.2.1 type-de�nition-part = [`type' type-de�nition `;' f type-de�nition `;' g] .

6.4.1 type-denoter = type-identi�er j new-type .

6.4.1 type-identi�er = identi�er .

6.6.3.7.1 unpacked-conformant-array-schema =

`array' `[' index-type-speci�cation f `;' index-type-speci�cation g `]'
`of' (type-identi�er j conformant-array-schema) .

74

ISO/IEC 7185:1990(E)

6.4.3.1 unpacked-structured-type = array-type j record-type j set-type j �le-type .

6.7.1 unsigned-constant = unsigned-number j character-string j constant-identi�er j `nil' .

6.1.5 unsigned-integer = digit-sequence .

6.1.5 unsigned-number = unsigned-integer j unsigned-real .

6.1.5 unsigned-real = digit-sequence `.' fractional-part [`e' scale-factor]

j digit-sequence `e' scale-factor .

6.6.3.7.1 value-conformant-array-speci�cation = identi�er-list `:' conformant-array-schema .

6.6.3.1 value-parameter-speci�cation = identi�er-list `:' type-identi�er .

6.5.1 variable-access = entire-variable j component-variable j identi�ed-variable
j bu�er-variable .

6.6.3.7.1 variable-conformant-array-speci�cation = `var' identi�er-list `:' conformant-array-schema .

6.5.1 variable-declaration = identi�er-list `:' type-denoter .

6.2.1 variable-declaration-part = [`var' variable-declaration `;' f variable-declaration `;' g] .

6.5.2 variable-identi�er = identi�er .

6.6.3.1 variable-parameter-speci�cation = `var' identi�er-list `:' type-identi�er .

6.4.3.3 variant = case-constant-list `:' `(' �eld-list `)' .

6.4.3.3 variant-part = `case' variant-selector `of' variant f `;' variant g .

6.4.3.3 variant-selector = [tag-�eld `:'] tag-type .

6.8.3.8 while-statement = `while' Boolean-expression `do' statement .

6.8.3.10 with-statement = `with' record-variable-list `do' statement .

6.1.2 word-symbol = `and' j `array' j `begin' j `case' j `const' j `div'
j `do' j `downto' j `else' j `end' j `�le' j `for'
j `function' j `goto' j `if' j `in' j `label' j `mod'

j `nil' j `not' j `of' j `or' j `packed' j `procedure'
j `program' j `record' j `repeat' j `set' j `then'
j `to' j `type' j `until' j `var' j `while' j `with' .

6.9.3 write-parameter = expression [`:' expression [`:' expression]] .

6.9.3 write-parameter-list = `(' [�le-variable `,'] write-parameter

f `,' write-parameter g `)' .

6.9.4 writeln-parameter-list = [`(' (�le-variable j write-parameter)

f `,' write-parameter g `)'] .

75

ISO/IEC 7185:1990(E)

Annex B

(Informative)

Cross-references

access 6.5.1 6.5.3.1 6.5.3.3

6.5.5 6.6.3.3 6.6.3.7.2

6.6.3.7.3 6.6.5.2 6.8.2.2

6.8.3.10 6.10

actual 6.6.3.3 6.6.3.4 6.6.3.5

6.7.3 6.8.2.3 6.8.3.9

actual-parameter 6.6.3.2 6.6.3.3 6.6.3.4

6.6.3.5 6.6.3.7.1 6.6.3.7.2

6.6.3.7.3 6.6.5.3 6.7.3

actual-parameter-list 6.6.6.5 6.7.3 6.8.2.3

6.9.5

array-type 6.4.3.1 6.4.3.2 6.5.3.2

6.6.3.7.1 6.6.3.8

assignment-compatible 6.4.6 6.5.3.2 6.6.3.2

6.6.5.2 6.6.5.4 6.8.2.2

6.8.3.9 6.9.1

assignment-statement 6.2.3.3 6.6.2 6.6.5.3

6.8.2.1 6.8.2.2 6.8.3.9

base-type 6.4.3.4 6.4.5 6.4.6

6.7.1

block 6.2.1 6.2.3.1 6.2.3.2

6.2.3.3 6.2.3.4 6.3

6.4.1 6.4.2.3 6.5.1

6.6.1 6.6.2 6.6.3.1

6.6.3.2 6.6.3.3 6.6.3.4

6.6.3.5 6.6.3.7.1 6.6.3.7.2

6.6.3.7.3 6.7.3 6.8.1

6.8.2.3 6.8.3.9 6.10

body 6.6.1 6.8.3.8 6.8.3.9

boolean-expression 6.7.2.3 6.8.3.4 6.8.3.7

6.8.3.8

boolean-type 6.4.2.2 6.7.2.3 6.7.2.5

6.9.3.1 6.9.3.5

bu�er-variable 6.5.1 6.5.5 6.6.5.2

6.9.1 6.9.3 6.9.5

6.10

case-constants 6.4.3.3 6.6.5.3 6.8.3.5

char-type 6.1.7 6.4.2.2 6.4.3.2

6.4.3.5 6.5.5 6.6.6.4

6.9.1 6.9.3.1 6.9.3.2

76

ISO/IEC 7185:1990(E)

character 6.1.7 6.1.9 6.4.2.2

6.6.6.4 6.9.1 6.9.3.2

6.9.3.3 6.9.3.4.1 6.9.3.4.2

character-string 6.1.1 6.1.7 6.1.8

6.3 6.4.3.2 6.7.1

closed 6.1.5 6.1.6 6.4.6

6.6.3.8 6.7.1 6.7.2.2

compatible 6.4.3.3 6.4.5 6.4.6

6.4.7 6.6.3.8 6.7.2.5

6.8.3.9

component 6.4.3.1 6.4.3.2 6.4.3.3

6.4.3.5 6.5.1 6.5.3.1

6.5.3.2 6.5.3.3 6.6.2

6.6.3.3 6.6.3.6 6.6.3.7.3

6.6.5.2 6.6.6.5 6.8.2.2

6.8.3.10 6.9.1 6.9.4

6.9.5

component-type 6.4.3.2 6.4.3.5 6.4.6

6.5.5 6.6.3.2 6.6.3.7.1

6.6.3.8

components 6.1.7 6.4.3.1 6.4.3.2

6.4.3.3 6.4.3.5 6.4.5

6.5.3.3 6.6.5.2 6.8.3.10

6.9.3.6

compound-statement 6.2.1 6.8.1 6.8.3.1

6.8.3.2

conformant-array-schema 6.6.3.6 6.6.3.7.1 6.6.3.8

congruous 6.6.3.4 6.6.3.5 6.6.3.6

constant 6.3 6.4.2.4 6.4.3.3

6.6.2 6.6.3.7.1

corresponding 1.2 4 6.1.4

6.1.9 6.2.3.2 6.2.3.3

6.4.1 6.4.3.3 6.5.4

6.6.3.1 6.6.3.3 6.6.3.6

6.6.3.7.1 6.6.3.7.2 6.6.3.7.3

6.6.3.8 6.6.4.1 6.6.5.2

6.7.2.2 6.7.3 6.8.2.3

de�ning-point 6.2.1 6.2.2.1 6.2.2.2

6.2.2.3 6.2.2.4 6.2.2.5

6.2.2.7 6.2.2.8 6.2.2.9

6.2.2.11 6.2.3.1 6.2.3.2

6.3 6.4.1 6.4.2.3

6.4.3.3 6.5.1 6.5.3.3

6.6.1 6.6.2 6.6.3.1

6.6.3.4 6.6.3.5 6.6.3.7.1

6.8.3.10 6.10

77

ISO/IEC 7185:1990(E)

de�nition 3.1 4 5.1

6.4.3.5 6.6.3.7.1

directive 6.1.4 6.6.1 6.6.2

entire-variable 6.5.1 6.5.2 6.8.3.9

enumerated-type 6.4.2.1 6.4.2.3

error 3.1 3.2 5.1

6.4.6 6.5.3.3 6.5.4

6.5.5 6.6.3.8 6.6.5.2

6.6.5.3 6.6.6.2 6.6.6.3

6.6.6.4 6.6.6.5 6.7.1

6.7.2.2 6.7.3 6.8.3.5

6.9.1 6.9.3 6.9.3.1

6.9.4 6.9.5

expression 6.5.3.2 6.6.3.2 6.6.3.7.2

6.6.5.2 6.6.5.3 6.6.5.4

6.6.6.2 6.6.6.3 6.6.6.4

6.6.6.5 6.7.1 6.7.2.3

6.7.3 6.8.2.2 6.8.3.5

6.8.3.9 6.9.3 6.9.3.1

factor 6.1.5 6.6.3.7.1 6.6.5.3

6.7.1 6.7.2.1

�eld 6.4.3.3 6.5.3.3 6.6.3.3

�eld-designator 6.2.2.6 6.5.3.1 6.5.3.3

�eld-identi�er 6.4.3.3 6.5.3.3 6.8.3.10

�le-type 6.4.3.1 6.4.3.5 6.4.6

6.5.5 6.6.3.2 6.10

�le-variable 6.5.5 6.6.5.2 6.6.6.5

6.9.1 6.9.2 6.9.3

6.9.4

formal 6.2.3.2 6.6.1 6.6.2

6.6.3.1 6.6.3.2 6.6.3.3

6.6.3.4 6.6.3.5 6.6.3.7.1

6.6.3.7.2 6.6.3.7.3 6.7.3

6.8.2.3

formal-parameter-list 6.6.1 6.6.2 6.6.3.1

6.6.3.4 6.6.3.5 6.6.3.7.1

function 6.1.2 6.2.3.2 6.2.3.3

6.4.3.5 6.6 6.6.1

6.6.2 6.6.3.5 6.6.6.3

6.6.6.4 6.6.6.5 6.7.2.2

6.7.3 6.9.3.3 6.9.3.4.1

6.9.3.4.2

function-block 6.1.4 6.2.3.2 6.2.3.3

6.6.2 6.6.3.1 6.8.2.2

function-declaration 6.1.4 6.2.1 6.6.2

6.7.3

78

ISO/IEC 7185:1990(E)

function-designator 6.2.3.4 6.6.3.7.2 6.7.1

6.7.3

function-identi�er 6.2.3.1 6.2.3.2 6.2.3.3

6.6.2 6.6.3.1 6.6.3.5

6.7.3 6.8.2.2

goto-statement 6.8.1 6.8.2.1 6.8.2.4

6.8.3.1 6.8.3.7 6.8.3.9

identi�er 4 6.1.3 6.2.2.1

6.2.2.5 6.2.2.7 6.2.2.8

6.2.2.9 6.2.2.11 6.3

6.4.1 6.4.2.3 6.4.3.3

6.5.1 6.5.2 6.5.3.3

6.6.1 6.6.2 6.6.3.1

6.6.3.7.1 6.6.3.7.2 6.8.3.9

6.8.3.10 6.10

identi�er-list 6.4.2.3 6.4.3.3 6.5.1

6.6.3.1 6.6.3.7.1 6.6.3.7.3

6.10

implementation-de�ned 3.1 3.3 5.1

5.2 6.1.7 6.4.2.2

6.6.5.2 6.7.2.2 6.9.3.1

6.9.3.4.1 6.9.3.5 6.9.5

6.10

implementation-dependent 3.2 3.4 5.1

5.2 6.5.3.2 6.7.1

6.7.2.1 6.7.3 6.8.2.2

6.8.2.3 6.9.5 6.10

index-type 6.4.3.2 6.5.3.2 6.6.3.7.1

6.6.3.8

indexed-variable 6.5.3.1 6.5.3.2 6.6.3.7.2

integer-type 6.1.5 6.3 6.4.2.2

6.4.2.3 6.4.6 6.6.6.2

6.6.6.3 6.6.6.4 6.6.6.5

6.7.2.2 6.7.2.5 6.9.1

6.9.3.1 6.9.3.3

label 6.1.2 6.1.6 6.2.1

6.2.2.1 6.2.2.5 6.2.2.7

6.2.2.8 6.2.2.9 6.2.2.11

6.2.3.2 6.2.3.3 6.8.1

6.8.2.4

member 6.4.6 6.7.1 6.7.2.5

note 3 3.1 3.5

5 5.1 5.2

6.1 6.1.4 6.1.7

6.1.9 6.2.2.8 6.2.2.10

6.2.2.11 6.2.3.2 6.2.3.3

79

ISO/IEC 7185:1990(E)

6.4.2.2 6.4.3.1 6.4.3.2

6.4.3.3 6.4.3.4 6.4.3.5

6.4.4 6.4.7 6.5.1

6.5.3.2 6.5.3.3 6.5.4

6.6.3.1 6.6.3.7 6.6.3.7.1

6.6.3.7.2 6.6.3.8 6.6.4.1

6.6.5.2 6.6.5.3 6.7.1

6.7.2.1 6.7.2.2 6.7.2.5

6.8.1 6.8.3.4 6.8.3.5

6.9.1 6.9.2 6.9.3.4.2

6.9.4 6.10

number 5.1 6.1.7 6.4.2.2

6.4.2.3 6.4.3.2 6.4.5

6.6.3.6 6.6.6.4 6.7.3

6.8.2.3 6.9.1 6.9.3.3

6.9.3.4 6.9.3.4.1 6.9.3.4.2

operand 6.7.2.1 6.7.2.2 6.7.2.5

operator 6.5.1 6.7.1 6.7.2.1

6.7.2.2 6.7.2.4 6.7.2.5

6.8.3.5

ordinal 6.4.2.1 6.4.2.2 6.4.2.3

6.6.6.1 6.6.6.4 6.7.2.5

ordinal-type 6.4.2.1 6.4.2.4 6.4.3.2

6.4.3.3 6.4.3.4 6.6.6.4

6.7.1 6.7.2.5 6.8.3.5

6.8.3.9

parameter 6.6.1 6.6.3.1 6.6.3.2

6.6.3.3 6.6.3.4 6.6.3.5

6.6.3.6 6.6.3.7.1 6.6.3.7.2

6.6.3.7.3 6.6.5.2 6.6.6.2

6.6.6.5 6.8.3.9 6.9.1

6.9.2 6.9.3 6.9.3.5

6.9.4 6.10

pointer 6.4.1 6.5.1 6.7.2.5

pointer-type 6.4.4 6.5.4 6.6.5.3

procedure 6.1.2 6.2.3.2 6.2.3.3

6.4.4 6.5.4 6.6

6.6.1 6.6.3.4 6.6.3.7.2

6.8.2.3 6.8.3.9 6.9.1

6.9.2 6.9.3 6.9.4

6.9.5 6.10

procedure-block 6.1.4 6.2.3.2 6.2.3.3

6.6.1 6.6.3.1 6.8.2.3

procedure-declaration 6.1.4 6.2.1 6.6.1

6.8.2.3

procedure-identi�er 6.2.3.1 6.2.3.2 6.2.3.3

80

ISO/IEC 7185:1990(E)

6.6.1 6.6.3.1 6.6.3.4

6.7.3 6.8.2.3

procedure-statement 6.2.3.4 6.8.2.1 6.8.2.3

6.8.3.9

program-parameters 6.2.3.5 6.10

real-type 6.1.5 6.3 6.4.2.2

6.4.6 6.6.6.2 6.6.6.3

6.7.2.2 6.7.2.5 6.9.1

6.9.3.1 6.9.3.4

record-type 6.4.3.1 6.4.3.3 6.5.3.3

6.6.5.3 6.8.3.10

record-variable 6.4.3.3 6.5.3.3 6.8.3.10

reference 6.5.3.1 6.5.3.3 6.5.4

6.5.5 6.6.3.3 6.6.3.7.2

6.6.3.7.3 6.8.2.2 6.8.3.10

region 6.2.1 6.2.2.2 6.2.2.3

6.2.2.4 6.2.2.5 6.2.2.6

6.2.2.7 6.2.2.10 6.2.3.1

6.2.3.2 6.3 6.4.1

6.4.2.3 6.4.3.3 6.5.1

6.5.3.3 6.6.1 6.6.2

6.6.3.1 6.6.3.7.1 6.8.3.10

6.10

result 6.2.3.2 6.2.3.3 6.2.3.5

6.6.1 6.6.2 6.6.6.2

6.6.6.3 6.6.6.4 6.7.2.2

6.7.2.4 6.7.2.5 6.7.3

6.8.2.2

same 3.5 5.2 6.1

6.1.3 6.1.4 6.1.7

6.2.3.3 6.4.1 6.4.2.2

6.4.2.4 6.4.3.2 6.4.5

6.4.6 6.4.7 6.5.3.1

6.5.3.2 6.6.3.2 6.6.3.3

6.6.3.5 6.6.3.6 6.6.3.7.1

6.6.3.7.2 6.6.3.8 6.6.6.2

6.6.6.4 6.7.1 6.7.2.2

6.7.2.4 6.7.2.5 6.8.3.5

6.8.3.10

scope 6.2 6.2.2 6.2.2.2

6.2.2.4 6.2.2.5 6.2.2.8

set-type 6.4.3.1 6.4.3.4 6.7.1

6.7.2.5

statement 6.2.1 6.2.3.2 6.6.5.4

6.8.1 6.8.2.1 6.8.3.1

6.8.3.4 6.8.3.5 6.8.3.8

81

ISO/IEC 7185:1990(E)

6.8.3.9 6.8.3.10

string-type 6.1.7 6.4.3.2 6.4.5

6.4.6 6.6.3.7.1 6.7.2.5

6.9.3.1 6.9.3.6

structured-type 6.4.3.1 6.4.3.5 6.5.1

6.8.2.2

subrange 6.4.2.4 6.4.5 6.7.1

6.9.1

text�le 6.4.3.5 6.5.5 6.6.6.5

6.9.1 6.9.2 6.9.3

6.9.4 6.9.5 6.10

token 4 6.1 6.1.1

6.1.2 6.1.8 6.1.9

totally-unde�ned 6.2.3.5 6.5.3.3 6.6.5.2

6.6.5.3 6.8.2.2 6.9.4

6.9.5

type-identi�er 6.2.2.9 6.2.2.11 6.4.1

6.4.2.1 6.4.4 6.6.3.1

6.6.3.2 6.6.3.3 6.6.3.6

6.6.3.7.1 6.6.3.8 6.10

unde�ned 6.5.3.3 6.5.4 6.6.5.2

6.6.5.3 6.6.6.5 6.7.1

6.7.3 6.8.2.2 6.8.3.9

6.9.1 6.9.3 6.9.4

variable 6.2.3.2 6.2.3.3 6.4.1

6.4.3.5 6.4.4 6.5.1

6.5.3.1 6.5.3.2 6.5.3.3

6.5.4 6.5.5 6.6.3.1

6.6.3.2 6.6.3.3 6.6.3.7.1

6.6.3.7.2 6.6.3.7.3 6.6.5.2

6.6.5.3 6.6.5.4 6.7.1

6.8.2.2 6.8.3.9 6.8.3.10

6.9.1 6.10

variable-access 6.5.1 6.5.3.2 6.5.3.3

6.5.4 6.5.5 6.6.3.3

6.6.3.7.3 6.6.5.2 6.6.5.3

6.7.1 6.7.3 6.8.2.2

6.8.3.9 6.9.1 6.9.2

variant 6.4.3.3 6.5.3.3 6.6.5.3

word-symbol 6.1.2 6.1.3 6.1.4

82

ISO/IEC 7185:1990(E)

Annex C

(Informative)

Required identi�ers

Identi�er Reference(s)

abs 6.6.6.2

arctan 6.6.6.2

Boolean 6.4.2.2

char 6.4.2.2

chr 6.6.6.4

cos 6.6.6.2

dispose 6.6.5.3

eof 6.6.6.5

eoln 6.6.6.5

exp 6.6.6.2

false 6.4.2.2

get 6.6.5.2

input 6.10

integer 6.4.2.2

ln 6.6.6.2

maxint 6.7.2.2

new 6.6.5.3

odd 6.6.6.5

ord 6.6.6.4

output 6.10

pack 6.6.5.4

page 6.9.5

pred 6.6.6.4

put 6.6.5.2

read 6.6.5.2, 6.9.1

readln 6.9.2

real 6.4.2.2

reset 6.6.5.2

rewrite 6.6.5.2

round 6.6.6.3

sin 6.6.6.2

sqr 6.6.6.2

sqrt 6.6.6.2

succ 6.6.6.4

text 6.4.3.5

true 6.4.2.2

trunc 6.6.6.3

unpack 6.6.5.4

83

ISO/IEC 7185:1990(E)

write 6.6.5.2, 6.9.3

writeln 6.9.4

84

ISO/IEC 7185:1990(E)

Annex D

(Informative)

Errors

A complying processor is required to provide documentation concerning its treatment of errors. To

facilitate the production of such documentation, all the errors speci�ed in clause 6 are described

again in this annex.

D.1 6.5.3.2

For an indexed-variable closest-containing a single index-expression, it is an error if the value

of the index-expression is not assignment-compatible with the index-type of the array-type.

D.2 6.5.3.3

It is an error unless a variant is active for the entirety of each reference and access to each

component of the variant.

D.3 6.5.4

It is an error if the pointer-variable of an identi�ed-variable denotes a nil-value.

D.4 6.5.4

It is an error if the pointer-variable of an identi�ed-variable is unde�ned.

D.5 6.5.4

It is an error to remove from its pointer-type the identifying-value of an identi�ed-variable

when a reference to the identi�ed-variable exists.

D.6 6.5.5

It is an error to alter the value of a �le-variable f when a reference to the bu�er-variable f"
exists.

D.7 6.6.3.2

It is an error if the value of each corresponding actual value parameter is not assignment-

compatible with the type possessed by the formal-parameter.

D.8 6.6.3.2

For a value parameter, it is an error if the actual-parameter is an expression of a set-type

whose value is not assignment-compatible with the type possessed by the formal-parameter.

D.9 6.6.5.2

It is an error if the �le mode is not Generation immediately prior to any use of put, write,

writeln or page.

D.10 6.6.5.2

It is an error if the �le is unde�ned immediately prior to any use of put, write, writeln or

page.

D.11 6.6.5.2

It is an error if end-of-�le is not true immediately prior to any use of put, write, writeln or

85

ISO/IEC 7185:1990(E)

page.

D.12 6.6.5.2

It is an error if the bu�er-variable is unde�ned immediately prior to any use of put.

D.13 6.6.5.2

It is an error if the �le is unde�ned immediately prior to any use of reset.

D.14 6.6.5.2

It is an error if the �le mode is not Inspection immediately prior to any use of get or read.

D.15 6.6.5.2

It is an error if the �le is unde�ned immediately prior to any use of get or read.

D.16 6.6.5.2

It is an error if end-of-�le is true immediately prior to any use of get or read.

D.17 6.6.5.2

For read, it is an error if the value possessed by the bu�er-variable is not assignment-

compatible with the variable-access.

D.18 6.6.5.2

For write, it is an error if the value possessed by the expression is not assignment-compatible

with the bu�er-variable.

D.19 6.6.5.3

For new(p,c1,...,cn), it is an error if a variant of a variant-part within the new variable becomes

active and a di�erent variant of the variant-part is one of the speci�ed variants.

D.20 6.6.5.3

For dispose(p), it is an error if the identifying-value had been created using the form new(p,c1,...,cn).

D.21 6.6.5.3

For dispose(p,k1,...,km), it is an error unless the variable had been created using the form

new(p,c1,...,cn) and m is equal to n.

D.22 6.6.5.3

For dispose(p,k1,...,km), it is an error if the variants in the variable identi�ed by the pointer

value of p are di�erent from those speci�ed by the case-constants k1,...,km.

D.23 6.6.5.3

For dispose, it is an error if the parameter of a pointer-type has a nil-value.

D.24 6.6.5.3

For dispose, it is an error if the parameter of a pointer-type is unde�ned.

D.25 6.6.5.3

It is an error if a variable created using the second form of new is accessed by the identi�ed-

variable of the variable-access of a factor, of an assignment-statement, or of an actual-parameter.

D.26 6.6.5.4

For pack, it is an error if the parameter of ordinal-type is not assignment-compatible with the

86

ISO/IEC 7185:1990(E)

index-type of the unpacked array parameter.

D.27 6.6.5.4

For pack, it is an error if any of the components of the unpacked array are both unde�ned

and accessed.

D.28 6.6.5.4

For pack, it is an error if the index-type of the unpacked array is exceeded.

D.29 6.6.5.4

For unpack, it is an error if the parameter of ordinal-type is not assignment-compatible with

the index-type of the unpacked array parameter.

D.30 6.6.5.4

For unpack, it is an error if any of the components of the packed array are unde�ned.

D.31 6.6.5.4

For unpack, it is an error if the index-type of the unpacked array is exceeded.

D.32 6.6.6.2

Sqr(x) computes the square of x. It is an error if such a value does not exist.

D.33 6.6.6.2

For ln(x), it is an error if x is not greater than zero.

D.34 6.6.6.2

For sqrt(x), it is an error if x is negative.

D.35 6.6.6.3

For trunc(x), the value of trunc(x) is such that if x is positive or zero then 0 � x�trunc(x)<1;
otherwise 1<x� trunc(x) � 0. It is an error if such a value does not exist.

D.36 6.6.6.3

For round(x), if x is positive or zero then round(x) is equivalent to trunc(x+0.5), otherwise

round(x) is equivalent to trunc(x� 0.5). It is an error if such a value does not exist.

D.37 6.6.6.3

For chr(x), the function returns a result of char-type that is the value whose ordinal number

is equal to the value of the expression x if such a character value exists. It is an error if such

a character value does not exist.

D.38 6.6.6.4

For succ(x), the function yields a value whose ordinal number is one greater than that of x, if

such a value exists. It is an error if such a value does not exist.

D.39 6.6.6.4

For pred(x), the function yields a value whose ordinal number is one less than that of x, if

such a value exists. It is an error if such a value does not exist.

D.40 6.6.6.5

When eof(f) is activated, it is an error if f is unde�ned.

87

ISO/IEC 7185:1990(E)

D.41 6.6.6.5

When eoln(f) is activated, it is an error if f is unde�ned.

D.42 6.6.6.5

When eoln(f) is activated, it is an error if eof(f) is true.

D.43 6.7.1

An expression denotes a value unless a variable denoted by a variable-access contained by the

expression is unde�ned at the time of its use, in which case that use is an error.

D.44 6.7.2.2

A term of the form x/y is an error if y is zero.

D.45 6.7.2.2

A term of the form i div j is an error if j is zero.

D.46 6.7.2.2

A term of the form i mod j is an error if j is zero or negative.

D.47 6.7.2.2

It is an error if an integer operation or function is not performed according to the mathematical

rules for integer arithmetic.

D.48 6.7.3

It is an error if the result of an activation of a function is unde�ned upon completion of the

algorithm of the activation.

D.49 6.8.2.2

For an assignment-statement, it is an error if the expression is of an ordinal-type whose value

is not assignment-compatible with the type possessed by the variable or function-identi�er.

D.50 6.8.2.2

For an assignment-statement, it is an error if the expression is of a set-type whose value is not

assignment-compatible with the type possessed by the variable.

D.51 6.8.3.5

For a case-statement, it is an error if none of the case-constants is equal to the value of the

case-index upon entry to the case-statement.

D.52 6.8.3.9

For a for-statement, it is an error if the value of the initial-value is not assignment-compatible

with the type possessed by the control-variable if the statement of the for-statement is executed.

D.53 6.8.3.9

For a for-statement, it is an error if the value of the �nal-value is not assignment-compatible

with the type possessed by the control-variable if the statement of the for-statement is executed.

D.54 6.9.1

On reading an integer from a text�le, after skipping preceding spaces and end-of-lines, it is an

error if the rest of the sequence does not form a signed-integer.

88

ISO/IEC 7185:1990(E)

D.55 6.9.1

On reading an integer from a text�le, it is an error if the value of the signed-integer read is

not assignment-compatible with the type possessed by variable-access.

D.56 6.9.1

On reading a number from a text�le, after skipping preceding spaces and end-of-lines, it is an

error if the rest of the sequence does not form a signed-number.

D.57 6.9.1

It is an error if the bu�er-variable is unde�ned immediately prior to any use of read.

D.58 6.9.3.1

On writing to a text�le, the values of TotalWidth and FracDigits are greater than or equal to

one; it is an error if either value is less than one.

D.59 6.10

The execution of any action, operation, or function, de�ned to operate on a variable, is an error

if the variable is a program-parameter and, as a result of the binding of the program-parameter,

the execution cannot be completed as de�ned.

D.60 6.6.3.8

For a conformant array, it is an error if the smallest or largest value speci�ed by the index-type

of the actual-parameter lies outside the closed interval speci�ed by the index-type-speci�cation

of the conformant-array-schema.

89

ISO/IEC 7185:1990(E)

Annex E

(Informative)

Implementation-de�ned features

A complying processor is required to provide a de�nition of all the implementation-de�ned features of

the language. To facilitate the production of this de�nition, all the implementation-de�ned aspects

speci�ed in clause 6 are listed again in this annex.

E.1 6.1.7
The string-characters which denote an implementation-de�ned value of the required char-
type.

NOTE | For processors which compile and execute in di�erent environments, the above may require

the de�nition of two character sets and a mapping between the two.

E.2 6.1.9

Provision of the reference tokens ", [, and], of the alternative token @, and of the delimiting

characters f and g, is implementation-de�ned.

E.3 6.4.2.2 b)
The values of the implementation-de�ned approximation to an implementation-de�ned subset
of the real numbers denoted by signed-real.

NOTE | The subset de�ned above may be by reference to another speci�cation.

E.4 6.4.2.2 d)

The values of char-type which are an enumeration of a set of implementation-de�ned characters.

E.5 6.4.2.2 d)

The ordinal numbers of each value of char-type are implementation-de�ned.

E.6 6.4.3.5

The set of characters designated prohibited from text�les is implementation-de�ned.

E.7 6.6.5.2

The point at which the �le operations rewrite, put, reset, and get are actually performed

is implementation-de�ned.

E.8 6.7.2.2

The value denoted by the constant-identi�er maxint is implementation-de�ned.

E.9 6.7.2.2

The accuracy of the approximation of the result of the real operations and functions to the

mathematical result is implementation-de�ned.

E.10 6.9.3.1

The default value of TotalWidth for integer-type is implementation-de�ned.

E.11 6.9.3.1

The default value of TotalWidth for real-type is implementation-de�ned.

90

ISO/IEC 7185:1990(E)

E.12 6.9.3.1

The default value of TotalWidth for Boolean-type is implementation-de�ned.

E.13 6.9.3.4.1

The value of ExpDigits is implementation-de�ned.

E.14 6.9.3.4.1

The value of the exponent character (`e' or `E') used on output of values of real-type is

implementation-de�ned.

E.15 6.9.3.5

The case of each character of 'True' and 'False' used on output of values of Boolean-type

is implementation-de�ned.

E.16 6.9.5

The e�ect of the procedure page when applied to a text�le which is in generation mode is

implementation-de�ned.

E.17 6.10

The binding of a �le-type program-parameter is implementation-de�ned.

E.18 6.10

The e�ect of reset and rewrite on the standard �les input and output is implementation-

de�ned.

91

ISO/IEC 7185:1990(E)

Annex F

(Informative)

Implementation-dependent features

A complying processor is required to provide documentation concerning the implementation-dependent

features of the language. To facilitate the production of such documentation, all the implementation-

dependent aspects speci�ed in clause 6 are listed again in this annex.

F.1 6.4.3.5

For any text�le t, the e�ect of attributing to a component of either t.L or t.R a member of

the characters prohibited from text�les is implementation-dependent.

F.2 6.5.3.2

The order of evaluation of the index-expressions of an indexed-variable is implementation-

dependent.

F.3 6.7.1

The order of evaluation of expressions of a member-designator is implementation-dependent.

F.4 6.7.1

The order of evaluation of the member-designators of a set-constructor is implementation-

dependent.

F.5 6.7.2.1

The order of evaluation of the operands of a dyadic operator is implementation-dependent.

F.6 6.7.3

The order of evaluation, accessing, and binding of the actual-parameters of a function-designator

is implementation-dependent.

F.7 6.8.2.2

The order of accessing the variable and evaluating the expression of an assignment-statement

is implementation-dependent.

F.8 6.8.2.3

The order of evaluation, accessing, and binding of the actual-parameters of a procedure-

statement is implementation-dependent.

F.9 6.9.5

The e�ect of inspecting a text�le to which the page procedure was applied during generation

is implementation-dependent.

F.10 6.10

The binding of non-�le variables denoted by the program-parameters to entities external to

the program is implementation-dependent.

92

