МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ имени К.Э. Циолковского»

Кафедра «Моделирование систем и информационные технологии»

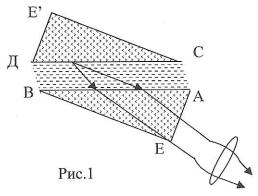
Определение показателя преломления жидкости при помощи рефрактометра

Методические указания к лабораторной работе по курсу «Общая физика»

Принадлежности:

- 1. Рефрактометр
- 2. Раствор сахарозы различных концентраций
- 3. Дистиллированная вода

Цель работы:


Ознакомление с рефрактометричесским анализом жидкостей и растворов и приобретение навыков в обшении с рефрактометром.

Краткое описание конструкций и принцип работы прибора

В основе конструкции рефрактометра положен оптический метод иссле-

дования растворов, заключающийся в определении показателя преломления исследуемого раствора по предельному углу преломления.

Несколько капель исследуемой жидкостипомещают между двумя гипотенузными гранями призм (рис. 1). Призма 1 имеет хорошо отполированную плоскую грань АВ и является измерительной, а призма 2 с матовой гранью СД - осветительной.

От источника света лучи падают на грань ДЕ', преломляются и попадают на матовую поверхность СД.

Вследствие рассеивания света матовой поверхностью в исследуемую жи-

дкость входят лучи различных направлений; далее они проходят слой исследуемой жидкости и попадают на поверхность AB призмы 1. На приборе можно исследовать жидкости, показатель преломления которых меньше показателя преломления призмы 1. Поэтому лучи всех направлений, преломившись на границе жидкость-стекло, войдут в призму.

Из закона преломления:
$$\sin I$$
 п $\sin \alpha$ N (1)

где: n - показатель преломления исследуемой жидкости

α - угол падения луча

N - показатель преломления измерительной призмы

I - угол преломления луча

N

Отсюда следует, что с увеличением угла ${\pmb \alpha}$ угол ${\pmb I}$ также будет увеличива-

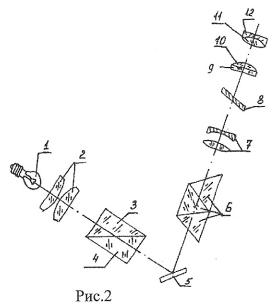
ться, достигая максимального значения при угле падения α =90°, т.е. когда па-

дающий луч скользит по поверхности АВ.

Максимальное значение угла преломления луча, соответствующее углу падения 90°, называется *предельным углом преломления*.

Так как зазор между призмами 1 и 2 мал, то можно приблизительно считать, что лучи с наибольшим углом падения являются скользящими. Тогда, подставляя значение α =90° в формулу (2), получим: n Sin I = --- N

откуда n = N Sin I


В действительности формула для определения показателя преломления несколько сложнее, так как выходящие из призмы 1 лучи преломляются на грани АЕ.

Показатель преломления **n** определяется по следующей формуле: $n = Sin \ \phi \ \sqrt{N^2 - Sin^2} \ \beta \pm Cos \ \phi \ Sin \ \beta$ где ϕ - преломляющий угол измерительной призмы.

Если на пути лучей, выходящих из призмы, поставить зрительную трубу, то нижняя часть ее поля зрения будет освещена, а верхняя останется темной; при этом положение границы раздела света и тени определиться лучом, выходящим из призмы под предельным углом β.

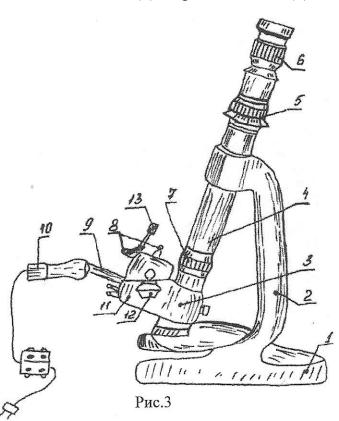
Одновременно с границей светотени в поле зрения зрительной трубы наблюдается условная шкала.

Оптическая схема прибора устроена следующим образом (рис. 2):

Лучи света от электролампочки (1)

при помощи двухлинзового конденсатора (2) направляются в осветительную призму (3), проходят тонкий слой исследуемой жидкости и измерительную призму (4). Затем, после отражения от плоского зеркала (5), направляются в призму прямого зрения (6) и попадают в двухлинзовый не склеенный объектив (7).

Далее лучи света проходят плоскопараллельную наклонную пластинку


(8), шкалу (9) и через окуляр типа Кельнера (10,11,12) попадают в глаз наблю дателя.

Призма прямого зрения (6) предназначена для устранения дисперсионной

окраски границы раздела света и тени, что достигается ее вращением вокруг оптической оси прибора. При вращении плоскопараллельной наклонной пластины (8) вокруг оптической оси прибора происходит смещение изображения границы раздела света и тени.

Рефрактометр состоит из следующих основных частей (рис. 3): чугунно-

го основания (1) с кронштейном (2), головки (3) и зрительной трубы (4) с отс

четным устройством. Для поддержания постоянной температуры призм предусмотрены камеры, сквозь которые пропускается вода. Подача и отвод воды осуществляется с помощью резиновых шлангов, одеваемых на штуцера (8). Нижняя камера (11) жестко закреплена в кронштейне и связана с верхней посредством шарнира (12). Зрительная труба так же жестко связана с нижней камерой. Перед объективом зрительной трубы расположена призма прямого зрения дисперсионного компенсатора. Устранение окрашенности границы светотени осуществляется поворотом кольца (7). В фокальной плоскости окуляра имеется условная

шкала от 0 до 100, соответствующая изменениям показателя преломления от 1.3330 до 1.3811.

С помощью лимба (5), имеющего 10 делений и связанного с наклонной плоско-параллельной пластиной, помещенной меду объективом и окуляром зрительной трубы, производят смещение границы светотени. Поворот лимба на 10 делений вызывает такое смещение плоско-параллельной пластинки, ко-

торое перемещает границу светотени на 1 деление шкалы. Таким образом, по лимбу отсчитывается 0.1 деление шкалы прибора. Перевод показаний рефрак тометра в показатели преломления осуществляется при помощи таблицы, приведенной в конце описания.

Окуляр (6) имеет возможность перемещения в пределах \pm 5 диоптрий, что дает возможность устанавливать резкость по глазу наблюдателя. Осветитель (10) укреплен на нижней части камеры с помощью кронштейна (9). Практические указания

1. Капли исследуемой жидкости на середину полированной поверхности измерительной призмы следует наносить стеклянной палочкой с оплавлен-

ным концом, чтобы не поцарапать полированной поверхности измерительной призмы.

- 2. При переходе от раствора к раствору необходимо осторожно удалить предыдуший раствор с полированной поверхности измерительной призмы с помощью чистой ваты, стараясь не поцарать эту поверхность.
- 3. Растворы необходимо держать закрытыми, т.к. испарение влаги приводит к изменению их концентраций. Стеклянную палочку после нанесения капли исследуемого раствора следует тщательно вытирать.

Ход работы

- 1. Включите понижающий трансформатор прибора (220/6,3 вольт) на напряжение 220 вольт. При этом должна загореться осветительная лампочка.
- 2. Отведите в сторону верхнюю камеру и с помощью стеклянной палоч-

ки осторожно нанесите 2-3 капли дистиллированной воды на полированную

поверхность измерительной призмы. Плавно закройте верхнюю камеру.

Наблюдая в окуляр (6) зрительной трубы, установите осветитель на кронштейне так, чтобы поле зрения было равномерно освещено. Поворотом кольца (7) устраните окрашенность границы светотени. Контрастность границы
светотени создается перемещением подвижной диафграммы верхней камеры
при помощи винта (13). Установите на нуль шкалу лимба (5), поворачивая
последний по часовой стрелке до упора. При этом граница светотени должна

к лаборанту или преподавателю; они произведут соответствующую регулиро-

проходить через нулевое деление шкалы. если этого нет, то нужно

вку прибора.

обратиться

3. Осторожно вытерев поверхность измерительной призмы, переходите к исследованию растворов сахарозы различных концентраций. исследование рекомендуется начинать с раствора максимальной заданной концентрации (20%). После нанесения раствора на поверхность призмы еще раз проверьте равномерность освещения шкалы, передвигая осветитель на кронштейне, и, после устранения окрашенности границы светотени и установки достаточной контрастности изображения, снимите отсчет. Для производства отсчета необходимо вращением лимба (5) переместить границу светотени до ближайшего верхнего деления шкалы и к отсчету по шкале добавить отсчет по лимбу, как первый десятичный знак.

Показания прибора следует брать как среднее из трех отсчетов при од-

ной и той же установке исследуемого раствора. отсчет, произведенный по шкале и лимбу, переводят при помощи прилагаемой таблицы в показатели преломления.

- 4. Досуха вытрите осторожно поверхности обеих призм и протрите их дистиллированной водой. Таким же образом протрите стеклянную палочку, закройте все растворы и выключите прибор.
- 5. Постройте на миллиметровой бумаге график зависимости показателя преломления (ось ординат) от концентрации (ось абсцисс).

ТАБЛИЦА № 1

перевода показаний прецизионного рефрактометра в показатели преломления и на %% сухих веществ по сахарозе

Шкала	n	Шкала	n	Шкала	n
00	1.33299	14.9	1.34037	29.4	1.34745
0.5	1.33324	15.0	1.34042	29.5	1.34750
1.0	1.33349	15.1	1.34047	29.6	1.34755
1.5	1.33374	15.2	1.34052	29.7	1.34760
2.0	1.33399	15.3	1.34057	29.8	1.34764
2.5	1.33424	15.4	1.34062	29.9	1.34769
3.0	1.33449	15.5	1.34067	30.0	1.34774
3.5	1.33474	15.6	1.34071	30.1	1.34779
4.0	1.33499	15.7	1.34076	30.2	1.34784
4.5	1.33524	15.8	1.34081	30.3	1.34788
5.0	1.33549	15.9	1.34086	30.4	1.34793
5.5	1.33574	16.0	1.34091	30.5	1.34798

6.0	1.33599	16.5	1.34116	30.6	1.34803
6.5	1.33624	17.0	1.34140	30.7	1.34808
7.0	1.33649	17.5	1.34165	30.8	1.34812
7.5	1.33674	18.0	1.3490	30.9	1.34817
8.0	1.33698	18.5	1.34215	31.0	1.34822
8.5	1.33723	19.0	1.34239	31.1	1.34827
9.0	1.33747	19.5	1.34264	31.2	1.34832
9.5	1.33772	20.0	1.34288	31.3	1.34836
10.0	1.33796	20.5	1.34313	31.4	1.34841
10.5	1.33821	21.0	1.34337	31.5	1.34846
11.0	1.33845	21.5	1.34361	31.6	1.34851
11.5	1.33870	22.0	1.34385	31.7	1.34857
12.0	1.33894	22.5	1.34410	31.8	1.34860
12.5	1.33919	23.0	1.34434	31.9	1.34865
13.0	1.33944	23.5	1.34459	32.0	1.34870
13.1	1.33949	24.0	1.34483	32.5	1.34894
13.2	1.33954	24.5	1.34508	33.0	1.34918
13.3	1.33959	25.0	1.34532	33.5	1.34942
13.4	1.33964	25.5	1.34557	34.0	1.34966
13.5	1.33696	26.0	1.34581	34.5	1.34990
13.6	1.33973	26.5	1.34606	35.0	1.35014
13.7	1.33978	27.0	1.34630	35.5	1.35038
13.8	1.33983	27.5	1.34654	36.0	1.35062
13.9	1.33988	28.0	1.34678	36.5	1.35087
14.0	1.33993	28.5	1.34702	37.0	1.35111
14.1	1.33998	28.6	1.34707	37.5	1.35135
14.2	1.34003	28.7	1.34712	38.0	1.35158
14.3	1.34008	28.8	1.34716	38.5	1.35182
14.4	1.34013	28.9	1.34721	39.0	1.35206
14.5	1.34018	29.0	1.34726	39.5	1.35230
14.6	1.34022	29.1	1.34731	40.0	1.35254
14.7	1.34027	29.2	1.34736	40.5	1.35278
14.8	1.34032	29.3	1.34740	41.0	1.35302

Шкала	n	Шкала	n	Шкала	n
41.5	1.35326	49.5	1.35707	64.3	1.36401
42.0	1.35350	50.0	1.35730	64.4	1.36405
42.5	1.35378	50.5	1.35754	64.5	1.36410
43.0	1.35398	51.0	1.35777	64.6	1.36415
43.5	1.35422	51.5	1.35801	64.7	1.36419
44.0	1.35446	52.0	1.35824	64.8	1.36424
44.5	1.35470	52.5	1.35848	64.9	1.36428
45.0	1.35494	53.0	1.35871	65.0	1.36433
45.1	1.35499	53.5	1.35895	65.1	1.36438
45.2	1.35503	54.0	1.35918	65.2	1.36442
45.3	1.35508	54.5	1.35942	65.3	1.36447
45.4	1.35513	55.0	1.35965	65.4	1.36452

45.5	1.35518	55.5	1.35989	65.5	1.36457
45.6	1.35522	56.0	1.36012	65.6	1.36461
45.7	1.35527	56.5	1.36036	65.7	1.36466
45.8	1.35532	57.0	1.36059	65.8	1.36471
45.9	1.35536	57.5	1.36083	65.9	1.36475
46.0	1.35541	58.0	1.36106	66.0	1.36480
46.1	1.35546	58.5	1.36130	66.5	1.36503
46.2	1.35551	59.0	1.36153	67.0	1.36526
46.3	1.35555	59.5	1.36177	67.5	1.36549
46.4	1.35560	60.0	1.36200	68.0	1.36572
46.5	1.35565	60.5	1.36224	68.5	1.36595
46.6	1.35570	61.0	1.36247	69.0	1.36618
46.7	1.35575	61.5	1.36271	69.5	1.36641
46.8	1.35579	62.0	1.36294	70.0	1.36664
46.9	1.35584	62.1	1.36299	70.5	1.36687
47.0	1.35589	62.2	1.36303	71.0	1.36710
47.1	1.35594	62.3	1.36308	71.5	1.36733
47.2	1.35598	62.4	1.36313	72.0	1.36756
47.3	1.35603	62.5	1.36318	72.5	1.36779
47.4	1.35608	62.6	1.36322	73.0	1.36802
47.5	1.35613	62.7	1.36327	73.5	1.36825
47.6	1.35617	62.8	1.36332	74.0	1.36848
47.7	1.35622	62.9	1.36336	74.5	1.36871
47.8	1.35627	63.0	1.36341	74.6	1.36876
47.9	1.35631	63.1	1.36346	75.0	1.36894
48.0	1.35636	63.2	1.36350	75.5	1.36917
48.1	1.35641	63.3	1.36355	76.0	1.36940
48.2	1.35645	63.4	1.36359	76.5	1.36963
48.3	1.35650	63.5	1.36364	77.0	1.36986
48.4	1.35655	63.6	1.36369	77.5	1.37009
48.5	1.35660	63.7	1.36373	78.0	1.37031
48.6	1.35664	63.8	1.36378	78.5	1.37054
48.7	1.35669	63.9	1.36382	79.0	1.37076
48.8	1.35674	64.0	1.36387	79.5	1.37099
48.9	1.35678	64.1	1.36392	80.0	1.37122
49.0	1.35683	64.2	1.36396	80.5	1.37145

Шкала	n	Шкала	n
80.6	1.37150	89.0	1.37532
80.7	1.37154	89.5	1.37555
80.8	1.37159	90.0	1.37577
80.9	1.37163	90.5	1.37600
81.0	1.37168	91.0	1.37622
81.1	1.37173	91.5	1.37645
81.2	1.37177	92.0	1.37667
81.3	1.37182	92.5	1.37690
81.4	1.37186	93.0	1.37712
81.5	1.37191	93.5	1.37735
81.6	1.37196	94.0	1.37757
81.7	1.37200	94.5	1.37780

81.8	1.37205	95.0	1.37802
81.9	1.37209	95.5	1.37825
82.0	1.37214	96.0	1.37847
82.1	1.37219	96.5	1.37870
82.2	1.37223	97.0	1.37892
82.3	1.37228	97.5	1.37915
82.4	1.37232	98.0	1.37937
82.5	1.37237	98.5	1.37960
82.6	1.37241	99.0	1.37982
82.7	1.37246	99.5	1.38005
82.8	1.37250	100.0	1.38027
82.9	1.37255	100.5	1.38049
83.0	1.37259	101.0	1.38071
83.1	1.37264	101.5	1.38094
83.2	1.37268	102.0	1.38116
83.3	1.37273		
83.4	1.37277		
83.5	1.37282		
83.6	1.37287		
83.7	1.37291		
83.8	1.37296		
83.9	1.37300		
84.0	1.37305		
84.1	1.37310		
84.2	1.37314		
84.3	1.37319		
84.4	1.37323		
84.5	1.37328		
85.0	1.37351		
85.5	1.37373		
86.0	1.37397		
86.5	1.37420		
87.0	1.37442		
87.5	1.37465		
88.0	1.37487		
88.5	1.37510		